Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World

(The Niels Bohr Institute, Copenhagen, Denmark)
  • Formāts: 696 pages
  • Izdošanas datums: 22-Mar-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439894200
  • Formāts - PDF+DRM
  • Cena: 67,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 696 pages
  • Izdošanas datums: 22-Mar-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439894200

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis.

New to the Second EditionThis edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented.

With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.

Recenzijas

"With its elegant presentation and comprehensive treatment of the subject, Physics of Continuous Matter does a fantastic job of illustrating how the physics of the classical world around us is profound, beautiful, and often counterintuitive." Sujit S. Datta, Pure and Applied Geophysics, 170 (2013)

"I completely agree with the reviewer of the first edition that this book provides an excellent, modern introduction to the field of continuum mechanics. The second edition has been streamlined, and the structure of the presentation has been improved. on its best way to become a classic text in the field. The text is exceptionally clear and well structured, and the breadth of the fields from which the author chooses his illustrating examples is impressive. I can warmly recommend this book to everyone with an interest in continuum mechanics, lecturers and students alike. Lecturers will find various historical anecdotes, innumerable examples and applications, and a modern account of almost all basic aspects of continuum mechanics that will provide an excellent foundation for a lecture course on this subject. Students can benefit from the authors deep physical insight into many difficult problems as well as his mastery of mathematical analysis." Thomas Peters, Contemporary Physics, January 2013

Praise for the First Edition:" this book satisfies with great style. Although it starts from the very beginning of the subject, it also reaches advanced topics, but without discontinuities along the way. A good introductory course could be based on this material. The emphasis is on understanding the problems and obtaining analytical solutions, but there are two chapters on computational methods, for static elasticity and for fluid dynamics. This is an excellent text, which ought to inspire students and teachers alike with the richness of behaviour that is contained within a few continuum equat

Preface xi
1 Continuous matter
1(18)
1.1 Molecules
2(4)
1.2 The continuum approximation
6(3)
1.3 Newtonian mechanics
9(2)
1.4 Reference frames
11(3)
1.5 Cartesian coordinate systems
14(1)
1.6 Fields
15(4)
I Fluids at rest
19(76)
2 Pressure
21(20)
2.1 What is pressure?
21(3)
2.2 The pressure field
24(3)
2.3 Hydrostatics
27(2)
2.4 Equation of stale
29(4)
2.5 Bulk modulus
33(1)
2.6 Application: Earth's homentropic atmosphere
34(4)
2.7 Application; The Sun's convective envelope
38(3)
3 Buoyancy and stability
41(16)
3.1 Archimedes' principle
41(3)
3.2 The gentle art of ballooning
44(2)
3.3 Stability of floating bodies
46(2)
3.4 Ship stability
48(9)
4 Hydrostatic shapes
57(12)
4.1 Fluid interfaces in hydrostatic equilibrium
57(1)
4.2 The centrifugal force
58(2)
4.3 The figure of Earth
60(2)
4.4 The Earth, the Moon, and the tides
62(4)
4.5 Application: The tides of Io
66(3)
5 Surface tension
69(26)
5.1 Basic physics of surface tension
69(4)
5.2 Soap bubbles
73(3)
5.3 Pressure discontinuity
76(2)
5.4 The Rayleigh-Plateau instability
78(3)
5.5 Contact angle
81(3)
5.6 Meniscus at a flat wall
84(2)
5.7 Meniscus in a cylindrical tube
86(2)
5.8 Application: Sessile drops and captive bubbles
88(2)
5.9 Application: Pendant drops and tethered bubbles
90(5)
II Solids at rest
95(92)
6 Stress
97(12)
6.1 Friction
97(2)
6.2 Stress fields
99(2)
6.3 The nine components of stress
101(3)
6.4 Mechanical equilibrium
104(2)
6.5 Asymmetric stress tensors
106(3)
7 Strain
109(16)
7.1 Displacement
109(3)
7.2 The displacement field
112(4)
7.3 Geometrical meaning of the strain tensor
116(3)
7.4 Work and energy
119(1)
7.5 Large deformations
120(5)
8 Hooke's law
125(14)
8.1 Young's modulus and Poisson's ratio
125(3)
8.2 Hooke's law in isotropic matter
128(4)
8.3 Static uniform deformation
132(2)
8.4 Elastic energy
134(5)
9 Basic elastostatics
139(24)
9.1 Equations of elastostatics
139(3)
9.2 Standing up to gravity
142(4)
9.3 Bending a beam
146
9.4 Twisting a shaft
130(23)
9.5 Application: Radial deformation of a spherical body
153(3)
9.6 Application: Radial deformation of a cylindrical body
156(7)
10 Slender rods
163(14)
10.1 Small deflections without torsion
163(3)
10.2 Buckling instability
166(3)
10.3 Large deflections without torsion
169(2)
10.4 Mixed bending and twisting
171(2)
10.5 Application: The helical spring
173(4)
11 Computational elastostatics
177(10)
11.1 Theory of the numeric method
177(3)
11.2 Discretization of space
180(2)
11.3 Application: Gravitational settling in two dimensions
182(5)
III Fluids in motion
187(150)
12 Continuum dynamics
189(18)
12.1 The velocity field
189(3)
12.2 Incompressible flow
192(2)
12.3 Mass conservation
194(4)
12.4 Equations of continuum dynamics
198(2)
12.5 Application: Big Bang
200(1)
12.6 Application: Newtonian cosmology
201(6)
13 Nearly ideal flow
207(22)
13.1 Euler equation For incompressible ideal flow
207(2)
13.2 Application: Collapse of a spherical cavity
209(2)
13.3 Steady incompressible ideal flow
211(5)
13.4 Vorticity
216(3)
13.5 Circulation
219(1)
13.6 Potential flow
220(2)
13.7 Application: Cylinder in uniform crosswind
222(3)
13.8 Application: Sphere in a uniform stream
225(1)
13.9 d'Alembert's paradox
226(3)
14 Compressible flow
229(14)
14.1 Small-amplitude sound waves
229(4)
14.2 Steady compressible flow
233(4)
14.3 Application: The Laval nozzle
237(6)
15 Viscosity
243(18)
15.1 Shear viscosity
243(3)
15.2 Velocity-driven planar flow
246(4)
15.3 Dynamics of incompressible Newtonian fluids
250(3)
15.4 Classification of flows
253(2)
15.5 Dynamics of compressible Newtonian fluids
255(2)
15.6 Application: Viscous attenuation of sound
257(4)
16 Channels and pipes
261(26)
16.1 Steady, incompressible, viscous flow
261(1)
16.2 Pressure-driven channel flow
262(3)
16.3 Gravity-driven planar flow
265(3)
16.4 Laminar pipe flow
268(6)
16.5 Phenomenology of turbulent pipe flow
274(3)
16.6 Laminar cylindric flow
277(4)
16.7 Secondary flow and Taylor vortices
281(6)
17 Creeping flow
287(22)
17.1 Stokes flow
287(2)
17.2 Creeping flow around a solid ball
289(5)
17.3 Beyond Stokes' law
294(4)
17.4 Lubrication
298(6)
17.5 Application: Loaded journal bearing
304(5)
18 Rotating fluids
309(14)
18.1 Fictitious forces
309(3)
18.2 Steady flow in a rotating system
312(3)
18.3 The Ekman layer
315(3)
18.4 Application: Steady bathtub vortex
318(2)
18.5 Debunking an urban legend
320(3)
19 Computational fluid dynamics
323(14)
19.1 Unsteady, incompressible flow
323(2)
19.2 Temporal discretization
325(1)
19.3 Spatial discretization
326(4)
19.4 Application: Laminar channel entry flow
330(7)
IV Balance and conservation
337(64)
20 Mechanical balances
339(16)
20.1 Quantities and sources
339(3)
20.2 Mass balance
342(1)
20.3 Momentum balance
343(3)
20.4 Angular momentum balance
346(2)
20.5 Kinetic energy balance
348(3)
20.6 Mechanical energy balauce
351(4)
21 Action and reaction
355(16)
21.1 Reaction force
355(4)
21.2 Reaction moment
359(7)
21.3 Application: The Francis turbine
366(5)
22 Energy
371(22)
22.1 First Law of Thermodynamics
371(4)
22.2 Incompressible fluid at rest
375(5)
22.3 Incompressible fluid in motion
380(4)
22.4 General homogeneous isotropic fluids
384(9)
23 Entropy
393(8)
23.1 Entropy in classical thermodynamics
393(2)
23.2 Entropy balance
395(3)
23.3 Fluctuations
398(3)
V Selected topics
401(186)
24 Elastic vibrations
403(16)
24.1 Elastodynamics
403(3)
24.2 Harmonic vibrations
406(3)
24.3 Refraction and reflection
409(5)
24.4 Surface waves
414(5)
25 Gravity waves
419(24)
25.1 Basic wave concepts
419(3)
25.2 Harmonic surface waves
422(2)
25.3 Open surface gravity waves
424(5)
25.4 Capillary waves
429(2)
25.5 Internal waves
431(3)
25.6 Global wave properties
434(5)
25.7 Statistics of wind-generated ocean waves
439(4)
26 Jumps and shocks
443(18)
26.1 Hydraulic jumps
443(5)
26.2 Circular jump
448(2)
26.3 Stationary shocks in uniformly moving fluids
450(4)
26.4 Application: Atmospheric blast wave
454(7)
27 Whirls and vortices
461(20)
27.1 Free cylindrical vortices
461(3)
27.2 Basic vortex theory
464(2)
27.3 Line vortices
466(5)
27.4 Advective vortex spin-up
471(1)
27.5 Steady vortex sustained by secondary flow
472(3)
27.6 Application: The bathtub vortex
475(6)
28 Boundary layers
481(32)
28.1 Basic physics of boundary layers
481(4)
28.2 Boundary layer theory
485(2)
28.3 The Blasius layer
487(5)
28.4 Turbulence in the Blasius layer
492(4)
28.5 Planar stagnation flow
496(2)
28.6 Self-similar boundary layers
498(3)
28.7 Laminar boundary layer separation
501(1)
28.8 Wall-anchored model
502(3)
28.9 Wall derivative plus momentum balance
505(1)
28.10 Momentum plus energy balance
506(2)
28.11 Integral approximation to separation
508(5)
29 Subsonic flight
513(34)
29.1 Aircraft controls
513(3)
29.2 Aerodynamic forces and moments
516(1)
29.3 Steady flight
517(3)
29.4 Estimating lift
520(7)
29.5 Estimating drag
527(5)
29.6 Lift, drag, and the trailing wake
532(5)
29.7 Two-dimensional airfoil theory
537(4)
29.8 The distant laminar wake
541(6)
30 Convection
547(18)
30.1 Heat-driven convection
547(5)
30.2 Convective instability
552(3)
30.3 Linear stability analysis of convection
555(2)
30.4 Application: Rayleigh-Benard convection
557(8)
31 Turbulence
565(22)
31.1 Scaling in fully developed turbulence
565(6)
31.2 Mean flow and fluctuations
571(3)
31.3 Universal inner layer near a smooth wall
574(5)
31.4 The outer layer
579(2)
31.5 Application: Turbulent channel flow
581(1)
31.6 Application: Turbulent pipe flow
582(2)
31.7 Turbulence modeling
584(3)
VI Appendices
587(44)
A Newtonian mechanics
589(6)
A.1 Dynamic equations
589(1)
A.2 Force and momentum
590(1)
A.3 Moment of force and angular momentum
591(1)
A.4 Power and kinetic energy
592(1)
A.5 Internal and external forces
593(1)
A.6 Hierarchies of particle interactions
594(1)
B Cartesian coordinates
595(16)
B.1 Cartesian vectors
595(1)
B.2 Vector algebra
596(2)
B.3 Basis vectors
598(1)
B.4 Index notation
599(2)
B.5 Cartesian coordinate transformations
601(3)
B.6 Scalars, vectors, and tensors
604(7)
C Field calculus
611(8)
C.1 Spatial derivatives
611(2)
C.2 Spatial integrals
613(1)
C.3 Fundamental integral theorems
614(1)
C.4 Proofs of the fundamental integral theorems
615(1)
C.5 Field transformations
616(3)
D Curvilinear coordinates
619(8)
D.1 Cylindrical coordinates
619(4)
D.2 Spherical coordinates
623(4)
E Ideal gases
627(4)
E.1 Internal energy
627(2)
E.2 Entropy
629(2)
Answers to problems 631(34)
References 665(8)
Index 673
B. Lautrup is a professor in theoretical physics at the Niels Bohr International Academy in the Niels Bohr Institute under the University of Copenhagen. He is also chairman of the Center for the Philosophy of Nature and Science Studies at the University of Copenhagen. His research interests include complex systems, fluid mechanics, and network theory.