Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physics of Flow in Porous Media

(Norwegian University of Science and Technology, Trondheim), (Universitetet i Oslo), (Universitetet i Oslo)
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Oct-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108996495
  • Formāts - PDF+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Oct-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108996495

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"An invaluable reference for graduate students and academic researchers, this book introduces the basic terminology, methods and theory of the physics of flow in porous media. Geometric concepts, such as percolation and fractals, are explained and simplesimulations are created, providing readers with both the knowledge and the analytical tools to deal with real experiments. It covers the basic hydrodynamics of porous media and how complexity emerges from it, as well as establishing key connections between hydrodynamics and statistical physics. Covering current concepts and their uses, this book is of interest to applied physicists and computational/theoretical Earth scientists and engineers seeking a rigorous theoretical treatment of this topic. Physicsof Flow in Porous Media fills a gap in the literature by providing a physics-based approach to a field that is mostly dominated by engineering approaches"--

Papildus informācija

A comprehensive, stepwise introduction to the basic terminology, methods and theory of the physics of flow in porous media.
Preface ix
1 Introduction
1(2)
2 Geometry of Porous Media
3(16)
2.1 Three-Dimensional Packing of Spheres
3(6)
2.2 Poisson Porous Media
9(6)
2.3 Minkowski Functionals
15(2)
2.4 Visualization of Porous Media
17(2)
Exercises
18(1)
3 Fractals
19(44)
3.1 Box-Counting Dimension
21(4)
3.2 Mass Dimension
25(2)
3.3 Measuring the Fractal Dimension with Log-Log Plots
27(1)
3.4 Disordered Fractals
28(3)
3.5 Multifractals*
31(14)
3.6 Self-Affine Surfaces
45(14)
3.7 Multiaffinity*
59(4)
Exercises
61(2)
4 Percolation
63(22)
4.1 Statistical Description of Percolation Clusters
66(2)
4.2 Critical Exponents and Fractal Dimension of Clusters
68(4)
4.3 Renormalization Group Derivation of v on the Triangular Lattice
72(2)
4.4 Invasion Percolation
74(1)
4.5 Directed Percolation*
75(5)
4.6 Transport Properties and Multifractality*
80(5)
Exercises
83(2)
5 Laminar Flow in Channels and Pipes
85(14)
5.1 Laminar Flow in a Channel
85(4)
5.2 Laminar Flow in a Pipe
89(2)
5.3 Lubrication*
91(8)
Exercises
98(1)
6 The Hydrodynamic Equations
99(28)
6.1 The Continuity Equation
99(1)
6.2 Conservation of Momentum
100(5)
6.3 The Stress Tensor
105(2)
6.4 The Navier-Stokes Equation
107(1)
6.5 Boundary Conditions
108(2)
6.6 The Reynolds Number and Scaling
110(4)
6.7 Two Theorems Based on the Steady Euler Equation
114(2)
6.8 The Stream Function and Moffatt Eddies*
116(5)
6.9 Stokes Flow Past a Sphere*
121(6)
Exercises
124(3)
7 TheDarcyLaw
127(30)
7.1 Derivation of Darcy's law
129(1)
7.2 Differential Form of Darcy's law
129(3)
7.3 Model Calculations for the Permeability
132(1)
7.4 The Capillary Model
132(4)
7.5 Kozeny Expression for k
136(6)
7.6 Katz-Thompson Model for Permeability*
142(5)
7.7 When the Porous Medium Is Rarified: The Brinkman Equation*
147(1)
7.8 When the Flow Is Rarified: The Klinkenberg Correction*
148(1)
7.9 Non-Newtonian Flow
149(8)
Exercises
154(3)
8 Dispersion
157(30)
8.1 Random Walks
157(5)
8.2 The Central Limit Theorem
162(2)
8.3 Advection-Diffusion Equation
164(5)
8.4 Taylor Dispersion
169(5)
8.5 Geometric Dispersion*
174(6)
8.6 First Arrival Times*
180(7)
Exercises
185(2)
9 Capillary Action
187(29)
9.1 Surface Tension Thermodynamics
188(3)
9.2 The Young-Laplace Law
191(2)
9.3 Young's Law
193(3)
9.4 Capillary Rise
196(8)
9.5 Bubble Flow in a Capillary
204(3)
9.6 Funicular Flow in a Capillary
207(9)
Exercises
214(2)
10 The Hele-Shaw Cell and Linear Stability Analysis
216(17)
10.1 Viscous Fingering and Linear Stability
216(2)
10.2 Linear Stability Analysis
218(5)
10.3 Observations of Viscous Fingers*
223(3)
10.4 The Nonlinear Regime*
226(3)
10.5 Experiments on Viscous Finger Dynamics*
229(4)
Exercises
232(1)
11 Displacement Patterns in Porous Media
233(31)
11.1 Flow in Porous Media Dominated by Capillary Forces
233(2)
11.2 Flow in Porous Media Dominated by Viscous Forces
235(3)
11.3 Crossover from Capillary to Viscous Behavior
238(2)
11.4 Displacement under the Effect of Gravity
240(4)
11.5 Steady State Multiphase Flow*
244(5)
11.6 Steady-State Flow in the Capillary Fiber Bundle Model*
249(9)
11.7 Mean Field Theory for Steady-State Immiscible Two-Phase Flow*
258(6)
Exercises
263(1)
12 Continuum Descriptions of Multiphase Flow
264(26)
12.1 Generalizing the Darcy Law to Two-Phase Flow: The Continuum Limit*
271(1)
12.2 Relative Permeabilites
272(4)
12.3 Continuity Equations
276(5)
12.4 Euler Scaling Theory*
281(9)
Exercises
289(1)
13 Particle Simulations of Multiphase Flows
290(39)
13.1 Random Walks and the Simulation of the Advection-Diffusion Equation
290(3)
13.2 Molecular Dynamics Simulations
293(5)
13.3 Lattice Gas Model for Hydrodynamics
298(14)
13.4 Lattice Boltzmann Models
312(17)
Exercises
324(5)
Appendix Porosity Distributions 329(5)
References 334(10)
Index 344
Jens Feder was Professor of Physics at the University of Oslo and author of the classic text, Fractals (Plenum Press, 1988). He had broad research interests including condensed matter physics, fluid dynamics and complex systems, and published many accomplished papers on these topics among others. He also successfully mentored a large number of developing researchers throughout his career. Feder was member of the Norwegian Academy of Science and Letters. Eirik Grude Flekkųy is Professor of Physics at the University of Oslo and Professor of Chemistry at the Norwegian University of Science and Technology. He has published a number of articles and written several books in statistical physics and hydrodynamics. He currently co-leads the Centre of Excellence Porous Media Laboratory (PoreLad) and is a member of the Royal Norwegian Society for Science and Letters. Alex Hansen is a Professor of Physics at the Norwegian University of Science and Technology. Since 2017 he has been the Director of the Centre of Excellence Porous Media Laboratory (PoreLab). He has an outstanding and extensive publication record in physics of porous media, complex matter physics and computational physics. Hansen is a member of the Norwegian Academy of Science and Letters and the Royal Norwegian Society for Science and Letters. He has an honorary doctorate from the University of Rennes, and he is honorary faculty at the Indian Institute of Technology at Guwahati.