Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physics of Nanostructured Solid State Devices

  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Feb-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461411413
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Feb-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461411413
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts.  The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices.

This book covers sophisticated models of charge transport including the Drift-diffusion model, Boltzmann transport model and the Quantum transport model. It includes many examples that apply the material to real life problems.

Recenzijas

From the reviews:

This textbook introduces the basic concepts of quantum mechanics that are necessary for understanding nanostructured solid-state devices. There are several solved examples in each chapter which should help students to better understand the material. Each chapter also includes several special topics in which physical properties are solved in one, two and three dimensions. This book is suitable for first year graduate students of electrical engineering and applied physics as well as researchers in the field. (Abdolnasser Zakery, Optics & Photonics News, September, 2012)

1 Charge and Current in Solids: The Classical Drift-Diffusion Model
1(34)
1.1 Introduction
1(3)
1.2 Drift-Diffusion Model
4(1)
1.3 The Drude Model and Ohm's Law
5(6)
1.4 Diffusion Current
11(2)
1.5 Electron and Hole Currents
13(1)
1.6 Conservation of Charge and the Continuity Equation
14(2)
1.7 Determining Transport Variables: The "Equations of State" or "Drift-Diffusion Equations"
16(1)
1.8 Generation and Recombination Processes
17(3)
1.9 Nonlinear but Local Effects: The Drift-Diffusion Model Holds
20(1)
1.10 Nonlocal Effects: Invalidity of Drift-Diffusion Model
21(6)
1.11 Summary
27(6)
References
33(2)
2 Boltzmann Transport: Beyond the Drift-Diffusion Model
35(56)
2.1 Transport in the Presence of Nonlocal Effects: The Carrier Distribution Function
35(2)
2.2 Boltzmann Transport Equation for the Carrier Distribution Function
37(4)
2.2.1 Limitations of the BTE
39(1)
2.2.2 Limits of Validity of the BTE
40(1)
2.3 The Generalized Moment Equation or Hydrodynamic Balance Equation
41(4)
2.4 Deriving the Drift-Diffusion Equations from the Generalized Moment Equation
45(5)
2.4.1 The Zero-th Moment
45(2)
2.4.2 The First Moment
47(3)
2.5 Too Many Unknowns
50(1)
2.6 Finding the Mobility and Diffusion Coefficient from the Carrier Distribution Function
51(7)
2.7 Methods of Solving the Boltzmann Transport Equation
58(1)
2.8 Relaxation Time Approximation Method
58(2)
2.9 When Can We Define a Constant Relaxation Time?
60(6)
2.9.1 Elastic Scattering
63(2)
2.9.2 Isotropic Scattering in a Nondegenerate Carrier Population
65(1)
2.10 Low Field Steady-State Conductivity in a Homogeneous Nondegenerate Electron Gas
66(5)
2.11 The Monte Carlo Simulation Method for Evaluating the Distribution Function
71(10)
2.11.1 Initial Conditions in the Simulation
72(1)
2.11.2 Determination of the Duration of Free Flight
73(3)
2.11.3 Updating the Electron Trajectory at the End of Free Flight and Beginning of the Collision Event
76(1)
2.11.4 Updating the Electron State After the Collision Event
76(2)
2.11.5 Terminating a Trajectory
78(1)
2.11.6 Collecting Statistics and Evaluating the Distribution Function
78(2)
2.11.7 Finer Points
80(1)
2.12 Summary
81(8)
References
89(2)
3 Some Essential Elements of Quantum Mechanics
91(56)
3.1 Introduction
91(1)
3.2 The Schrodinger Picture
91(2)
3.2.1 Calculating Expectation Values
92(1)
3.3 The Wavefunction and the Schrodinger Equation
93(5)
3.3.1 Schrodinger Equation in a Time-Independent Potential
95(1)
3.3.2 Wavefunction of a Free Electron
96(1)
3.3.3 Electron Wave and Electron Waveguide
97(1)
3.4 How to Find the Quantum-Mechanical Operator for a Physical Quantity
98(9)
3.4.1 Rectangular Potential Well
104(2)
3.4.2 Parabolic Well
106(1)
3.5 Perturbation Theory
107(10)
3.5.1 Time-Independent Perturbation Theory
108(6)
3.5.2 Time-Dependent Perturbation Theory
114(3)
3.6 Wavefunction Engineering: Device Applications of Perturbation Theory
117(7)
3.6.1 The Velocity Modulation Transistor
117(2)
3.6.2 The Electro-Optic Modulator Based on the Quantum-Confined Stark Effect
119(5)
3.7 Multi-Electron Schrodinger Equation
124(9)
3.7.1 Hartree and Exchange Potentials
128(2)
3.7.2 Self-Consistent Schrodinger-Poisson Solution
130(3)
3.8 Summary
133(12)
References
145(2)
4 Band Structures of Crystalline Solids
147(62)
4.1 Introduction
147(2)
4.2 The Schrodinger Equation in a Crystal
149(2)
4.2.1 Crystallographic Directions and Miller Indices
150(1)
4.3 The Nearly Free Electron Method for Calculating Bandstructure
151(4)
4.3.1 Why Do Energy Gaps Appear in the Bandstructure?
154(1)
4.3.2 Designation of Conduction and Valence Bands
155(1)
4.4 The Orthogonalized Plane Wave Expansion Method
155(5)
4.4.1 The Pseudopotential Method
159(1)
4.5 The Tight-Binding Approximation Method
160(5)
4.6 The k . p Perturbation Method
165(19)
4.6.1 Application of Perturbation Theory to Calculate Bandstructure
167(1)
4.6.2 A Simple Two-Band Theory: Neglecting the Remote Bands
168(4)
4.6.3 The Effect of Spin-Orbit Interaction on Bandstructure
172(3)
4.6.4 The 8-band k . p Perturbation Theory
175(3)
4.6.5 The 6x6 Hamiltonian: Neglecting the Split-Off Valence Band
178(1)
4.6.6 The 4x4 Hamiltonian: Neglecting Spin-Orbit Interaction
179(5)
4.7 Density of States of Electrons and Holes in a Crystal
184(13)
4.7.1 Equilibrium Electron Concentrations at Absolute Zero of Temperature
188(1)
4.7.2 Density of States as a Function of Kinetic Energy
189(3)
4.7.3 Calculating the Electron and Hole Concentrations in a Crystal Using the Density of States in Kinetic Energy Space
192(3)
4.7.4 Expressions for the Carrier Concentrations at Nonzero Temperatures
195(2)
4.8 Density of States of Phonons and Photons
197(5)
4.8.1 Density of Modes or Density of States of Phonons
200(1)
4.8.2 Density of States of Photons
201(1)
4.9 Summary
202(5)
References
207(2)
5 Carrier Scattering in Solids
209(48)
5.1 Charge Carrier Scattering
209(1)
5.2 Fermi's Golden Rule for Calculating Carrier Scattering Rates
209(7)
5.2.1 Derivation of Fermi's Golden Rule
210(6)
5.3 Dressed Electron States and Second Quantization Operators
216(3)
5.3.1 Matrix Elements with Dressed States
218(1)
5.4 Applying Fermi's Golden Rule to Calculate Phonon Scattering Rates
219(9)
5.4.1 Einstein's Thermodynamic Balance Argument
221(7)
5.5 Calculation of Relaxation Rates
228(18)
5.5.1 Scattering Rates in 3-D (Bulk) Systems
228(9)
5.5.2 Scattering Rates in 2-D (Quantum Well) Systems
237(5)
5.5.3 Scattering Rates in 1-D (Quantum Wire) Systems
242(4)
5.6 Advanced Topics
246(4)
5.6.1 Phonon Confinement Effects
246(3)
5.6.2 Phonon Bottleneck Effects
249(1)
5.7 Summary
250(4)
References
254(3)
6 Optical Properties of Solids
257(84)
6.1 Interaction of Light with Matter: Absorption and Emission Processes
257(8)
6.1.1 The k-selection Rule
260(4)
6.1.2 Optical Processes in Direct-Gap and Indirect-Gap Semiconductors
264(1)
6.2 Rate Equation in Two-Level Systems
265(5)
6.2.1 Gain Medium and Lasing
269(1)
6.3 The Three Important Optical Processes
270(3)
6.4 Van Roosbroeck-Shockley Relation
273(3)
6.4.1 The B-Coefficient
276(1)
6.5 Semiconductor Lasers
276(6)
6.5.1 Threshold Condition for Lasing
277(5)
6.6 Different Types of Semiconductor Lasers
282(7)
6.6.1 Double Heterostructure Lasers
283(1)
6.6.2 Quantum Well Lasers
283(1)
6.6.3 Quantum Cascade Lasers
283(2)
6.6.4 Graded Index Separate Confinement Heterostructure Lasers
285(1)
6.6.5 Distributed Feedback Lasers
286(1)
6.6.6 Vertical Cavity Surface Emitting Lasers
287(1)
6.6.7 Quantum Dot Lasers
287(2)
6.7 Calculation of K p.ω1 (m, n) in Bulk Semiconductor
289(11)
6.7.1 The Electron-Photon Interaction Hamiltonian
293(5)
6.7.2 Polarization Dependence of Absorption and Emission
298(2)
6.8 Absorption and Emission in Semiconductor Nanostructures (Quantum Wells and Wires)
300(14)
6.8.1 Quantum Wells
301(8)
6.8.2 Quantum Wires
309(5)
6.9 Excitons
314(7)
6.9.1 Excitons in Quantum-Confined Nanostructures
318(2)
6.9.2 Bleaching of Exciton Absorption: Nonlinear Optical Properties
320(1)
6.10 Polariton Laser
321(2)
6.11 Photonic Crystals
323(2)
6.12 Negative Refraction
325(3)
6.12.1 Superlens
326(1)
6.12.2 Invisibility Cloaking
327(1)
6.13 Summary
328(11)
References
339(2)
7 Magnetic Field Effects in a Nanostructured Device
341(54)
7.1 Electrons in a Magnetic Field
341(1)
7.2 Dirac's Equation and Pauli's Equation
342(3)
7.3 The "Spinless" Electron in a Magnetic Field
345(1)
7.4 An Electron in a Two-Dimensional Electron Gas (Quantum Well) Placed in a Static and Uniform Magnetic Field
345(16)
7.4.1 Landau Levels and Landau Orbits
349(6)
7.4.2 Density of States in a Two-Dimensional Electron Gas in a Perpendicular Magnetic Field
355(3)
7.4.3 Shubnikov-deHaas Oscillations in a Two-Dimensional Electron Gas
358(3)
7.5 An Electron in a One-Dimensional Electron Gas (Quantum Wire) Placed in a Static and Uniform Magnetic Field
361(14)
7.5.1 Quantum Wire with Parabolic Confinement Potential Along the Width
361(7)
7.5.2 Quantum Wire with Rectangular Confinement Potential Along the Width
368(5)
7.5.3 Edge State Phenomena
373(1)
7.5.4 Shubnikov-deHaas Oscillations in a Quasi One-Dimensional Electron Gas
374(1)
7.6 The Quantum-Confined Lorentz Effect
375(2)
7.7 The Hall Effect in a Two-Dimensional Electron Gas
377(5)
7.8 The Integer Quantum Hall Effect
382(1)
7.9 The Fractional Quantum Hall Effect
382(4)
7.10 Summary
386(7)
References
393(2)
8 Quantum Transport Formalisms
395(96)
8.1 When Is a Quantum-Mechanical Model for Transport Necessary?
395(5)
8.2 Quantum Mechanical Model to Calculate Transport Variables
400(28)
8.2.1 How to Calculate the Wavefunction
402(5)
8.2.2 The Transmission Matrix Method
407(2)
8.2.3 The Scattering Matrix
409(6)
8.2.4 Finding the Composite Current Scattering Matrix of a Disordered Region
415(1)
8.2.5 The Scattering Matrix for an Elastic Scatterer
416(3)
8.2.6 Finding the Coefficients Am,p;m',p'(x), Bm,p;m',p'(x), Cm,p;m',p'(x), and Dm,p;m',p'(x) at Some Location Within the Device
419(9)
8.3 The Importance of Evanescent Modes
428(4)
8.4 Spatially Varying Potential and Self-Consistent Solutions
432(2)
8.5 Terminal Currents
434(17)
8.5.1 A Two-Terminal Device and Tsu-Esaki Equation
434(9)
8.5.2 When Is Response Linear?
443(3)
8.5.3 Landauer Formula and Quantized Conductance of Point Contacts
446(2)
8.5.4 The Buttiker Multiprobe Formula
448(3)
8.6 The 2-probe and 4-probe Landauer Formulas
451(8)
8.6.1 The Contact Resistance
455(1)
8.6.2 The Addition Law of Series Resistance
456(2)
8.6.3 Computing the Landauer Resistances by Finding the Transmission Probability Through a Device
458(1)
8.7 The Landau-Vlasov Equation or the Collisionless Quantum Boltzmann Transport Equation
459(5)
8.8 A More Useful Collisionless Boltzmann Transport Equation
464(2)
8.9 Quantum Correlations
466(7)
8.10 Quantum Transport in an Open System with Device-Contact Coupling and the Self-Energy Potential
473(5)
8.10.1 Coupling of a Device to a Single Contact
474(4)
8.11 The Nonequilibrium Green's Function Formalism
478(2)
8.12 Summary
480(8)
References
488(3)
9 Quantum Devices and Mesoscopic Phenomena
491(56)
9.1 Introduction
491(1)
9.2 Double Barrier Resonant Tunneling Diodes
491(14)
9.2.1 Current-Voltage Characteristic of a Double Barrier Resonant Tunneling Diode
499(1)
9.2.2 Space Charge Effects and Self-Consistent Solution
499(1)
9.2.3 The Effect of Nonidealities on the Double-Barrier Resonant Tunneling Diode
500(2)
9.2.4 Other Mechanisms for Negative Differential Resistance in a DBRTD
502(1)
9.2.5 Tunneling Time
503(2)
9.3 The Stub-Tuned Transistor
505(4)
9.4 Aharonov-Bohm Quantum Interferometric Devices
509(11)
9.4.1 The Altshuler-Aronov-Spivak Effect
512(4)
9.4.2 More on the Ballistic Aharonov-Bohm Conductance Oscillations
516(1)
9.4.3 Magnetostatic Aharonov-Bohm Effect in Quantum Wire Rings
517(3)
9.5 The Electrostatic Aharonov-Bohm Effect
520(10)
9.5.1 The Effect of Multiple Reflections
524(6)
9.6 Mesoscopic Phenomena: Applications of Buttiker's Multiprobe Formula
530(10)
9.6.1 Hall Resistance of a Cross and Quenching of Hall Resistance
531(4)
9.6.2 Bend Resistance of a Cross
535(1)
9.6.3 An Alternate Explanation of the Integer Quantum Hall Effect
535(5)
9.7 Summary
540(5)
References
545(2)
Index 547