Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physics of the Plasma Universe

4.78/5 (11 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Sep-2014
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461478195
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Sep-2014
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461478195

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy.

This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based on the research of Professor Gerrit Verschuur, and reinvestigation of the manifestation of interstellar neutral hydrogen filaments from radio astronomical observations are given. Using data from the Green Bank 100-m telescope (GBT) of the National Radio Astronomy Observatory (NRAO), detailed information is presented for a non-cosmological origin for the cosmic microwave background quadruple moment.

This volume is aimed at graduate students and researchers active in the areas of cosmic plasmas and space science.

The supercomputer and experimental work was carried out within university, National laboratory, Department of Energy, and supporting NASA facilities.



This book presents the known properties of matter in the plasma state, going from the fundamentals to astrophysical applications. It features examples of scientific problems, as well as numerous illustrations and appendices.

Recenzijas

Physics of the Plasma Universe Second Edition by Anthony L. Perrat is a profound guide dedicated to plasma physics in the Solar System . It is addressed to graduate students and researchers working in the field of cosmic plasma. The book is an excellent manual for young and experienced scientists interested in plasma physics. The second edition incorporates many recent results and makes the book an up-to-date guide through the science of plasma in the Universe. (Alicja Wierzcholska and Hubert Siejkowski, Pure and Applied Geophysics, Vol. 174, 2017)

Anyone who has spent time engaged in research or in teaching in the field of plasma physics will know that it contains a wide variety of elements, both in terms of the physical theories that support it and the phenomena to which it can be applied. those looking for an eventful up-to-date guided tour through some of the key sites of the plasma universe may well find what they are looking for here. (Terry Robinson, The Observatory, Vol. 135 (1248), October, 2015)

This book is the result of four decades of research work of a well-known specialist, this period has been spent in different frontiers of plasma research. congratulations to the author for having written this volume, and warmest stimulations to the readers: they shall be pleased reading this book! (Ivįn Abonyi, zbMATH 1306.82001, 2015)

1 Cosmic Plasma Fundamentals
1(40)
1.1 Plasma
1(2)
1.2 The Physical Sizes and Characteristics of Plasmas in the Universe
3(14)
1.2.1 Plasmas on Earth
3(2)
1.2.2 Near-Earth Plasmas
5(3)
1.2.3 Plasmas in the Solar System
8(1)
1.2.4 Transition Regions in the Solar System
8(3)
1.2.5 Solar, Stellar, and Interstellar Plasmas
11(5)
1.2.6 Galactic and Extragalactic Plasmas
16(1)
1.3 Regions of Applicability of Plasma Physics
17(3)
1.4 Power Generation and Transmission
20(2)
1.5 Electrical Discharges in Cosmic Plasma
22(3)
1.6 Particle Acceleration in Cosmic Plasma
25(1)
1.6.1 Acceleration of Electric Charges
25(1)
1.6.2 Collective Ion Acceleration
25(1)
1.7 Plasma Pinches and Instabilities
26(6)
1.7.1 The Bennett Pinch
26(1)
1.7.2 The Force-Free Configuration
26(1)
1.7.3 The Diocotron Instability
27(1)
1.7.4 Critical Ionization Velocity
28(4)
1.8 Diagnosing Cosmic Plasmas
32(9)
1.8.1 The Electromagnetic Spectrum
32(4)
1.8.2 In Situ Space Probes
36(1)
References
37(4)
2 Birkeland Currents in Cosmic Plasma
41(52)
2.1 History of Birkeland Currents
41(5)
2.2 Field-Aligned Currents in Laboratory Plasma
46(1)
2.3 Field-Aligned Currents in Astrophysical Plasmas
46(1)
2.4 Basic Equations of Magnetohydrodynamics
47(3)
2.4.1 General Plasma Fluid Equations
47(2)
2.4.2 Magnetic Reynolds and Lundquist Numbers
49(1)
2.5 The Generalized Bennett Relation
50(9)
2.5.1 The Bennett Relation
52(1)
2.5.2 Alfven Limiting Current
53(1)
2.5.3 Charge Neutralized Beam Propagation
54(1)
2.5.4 Current Neutralized Beam Propagation
54(1)
2.5.5 Discussion
55(1)
2.5.6 Beam Propagation Along an External Magnetic Field
55(1)
2.5.7 Schonherr Whirl Stabilization
56(1)
2.5.8 The Carlqvist Relation
56(1)
2.5.9 The Cylindrical Pinch
57(2)
2.5.10 The Sheet Pinch
59(1)
2.6 Application of the Carlqvist Relation
59(5)
2.6.1 Birkeland Currents in Earth's Magnetosphere
59(2)
2.6.2 Currents in the Solar Atmosphere
61(1)
2.6.3 Heliospheric Currents
61(1)
2.6.4 Currents in the Interstellar Medium
62(1)
2.6.5 Currents in the Galactic Medium
63(1)
2.6.6 Currents in the Intergalactic Medium
64(1)
2.7 Basic Fluid and Beam Instabilities
64(4)
2.7.1 Jeans Condition for Gravitational Instability
64(2)
2.7.2 Two-Stream (Buneman) Instability
66(2)
2.7.3 Sausage and Kink Instabilities
68(1)
2.8 Laboratory Simulation of Cosmic Plasma Processes
68(5)
2.8.1 High-Current Plasma Pinches
69(3)
2.8.2 Laboratory Aurora Simulations
72(1)
2.9 The Particle-in-Cell Simulation of Beams and Birkeland Currents
73(20)
2.9.1 Charge and Current Neutralized Beam Propagation in Plasma
75(1)
2.9.2 Relativistic and Mildly Relativistic Beam Propagation in Plasma
76(1)
2.9.3 Propagation of a Relativistic Beam Bunch Through Plasma
77(1)
2.9.4 Beam Filamentation
78(1)
2.9.5 Dynamical Evolution of a Narrow Birkeland Filament
79(3)
2.9.6 Vortex Formation in Thin Cylindrical Electron Beams Propagating Along a Magnetic Field
82(4)
2.9.7 Charge-Neutralized Relativistic Electron Beam Propagation Along a Magnetic Field
86(1)
2.9.8 Numerical Aurora Simulations
87(1)
References
88(5)
3 Biot-Savart Law in Cosmic Plasma
93(46)
3.1 History of Magnetism
93(1)
3.2 The Magnetic Interaction of Steady Line Currents
94(1)
3.3 The Magnetic Induction Field
95(3)
3.3.1 Field from an Infinite Conductor of Finite Radius
97(1)
3.3.2 Force Between Two Infinite Conductors
97(1)
3.4 The Vector Potential
98(3)
3.4.1 Field from a Circular Loop and Force Between Two Circular Loops
99(2)
3.4.2 Force Between Two Circular Loops Lying in a Plane
101(1)
3.5 Quasi-stationary Magnetic Fields
101(3)
3.5.1 Faraday's Law
101(1)
3.5.2 Motion Induced Electric Fields
102(1)
3.5.3 Faraday Disk Dynamo
103(1)
3.6 Inductance
104(1)
3.7 Storage of Magnetic Energy
105(2)
3.7.1 Energy in a System of Current Loops
105(1)
3.7.2 In Situ Storage in Force Free Magnetic Field Configurations
106(1)
3.8 Forces as Derivatives of Coefficients of Inductance
107(1)
3.9 Measurement of Magnetic Fields in Laboratory Plasmas
108(1)
3.10 Particle-in-Cell Simulation of Interacting Currents
109(12)
3.10.1 Simulation Setup
110(1)
3.10.2 Initial Motion of Current Filaments
111(2)
3.10.3 Polarization Forces
113(1)
3.10.4 Magnetic Energy Distribution and Magnetic Isobars
114(1)
3.10.5 Net Motion
115(4)
3.10.6 "Doubleness" in Current-Conducting Plasmas
119(2)
3.11 Magnetic Fields in Cosmic Dimensioned Plasma
121(18)
3.11.1 Measurement of Galactic Magnetic Fields
121(2)
3.11.2 Milky Way Galaxy
123(1)
3.11.3 Spiral Galaxies
124(4)
3.11.4 Rotational Velocities of Spiral Galaxies
128(3)
3.11.5 Elliptical Galaxies
131(3)
3.11.6 Intergalactic Magnetic Fields
134(1)
References
134(5)
4 Electric Fields in Cosmic Plasma
139(36)
4.1 Electric Fields
140(1)
4.2 Measurement of Electric Fields
140(5)
4.3 Magnetic Field Aligned Electric Fields
145(3)
4.3.1 Collisionless Thermoelectric Effect
145(1)
4.3.2 Magnetic Mirror Effect
146(1)
4.3.3 Electrostatic Shocks
146(1)
4.3.4 Electric Double Layers
147(1)
4.4 Magnetospheric Electric Fields
148(7)
4.4.1 The Plasmasphere
148(1)
4.4.2 The Plasmasheet
149(1)
4.4.3 The Neutral Sheet
150(1)
4.4.4 The Magnetotail
151(1)
4.4.5 The Magnetopause
151(1)
4.4.6 The Auroral Acceleration Region
151(2)
4.4.7 Global Distributions of Auroral Electric Fields
153(2)
4.5 Outstanding Questions
155(1)
4.6 Phenomena Associated with Electric Fields
156(19)
4.6.1 Surface Discharges
156(2)
4.6.2 Plasma Gun Arc Discharges
158(9)
4.6.3 Marklund Convection and Separation of Elements
167(1)
4.6.4 Particle Acceleration and Runaway
168(3)
4.6.5 Field-Aligned Electric Fields as the Source of Cosmic Rays
171(1)
References
172(3)
5 Double Layers in Astrophysics
175(30)
5.1 General Description of Double Layers
175(2)
5.2 The Time-Independent Double Layer
177(6)
5.2.1 One-Dimensional Model
177(2)
5.2.2 Ratio of the Current Densities
179(1)
5.2.3 The Potential Drop
179(1)
5.2.4 Structure of the Double Layer
180(1)
5.2.5 Kinetic Description
180(3)
5.3 Particle-in-Cell Simulation of Double Layers
183(4)
5.3.1 Simulations of the Two-Stream Instability
184(2)
5.3.2 Simulations of Double Layers
186(1)
5.4 Double Layers in Current Filaments
187(2)
5.5 Basic Properties of Double Layers
189(3)
5.5.1 Double Layers as a Surface Phenomena
189(1)
5.5.2 Noise and Fluctuations in Double Layers
190(1)
5.5.3 Exploding Double Layers
190(1)
5.5.4 Oblique Double Layers
191(1)
5.6 Examples of Cosmic Double Layers
192(13)
5.6.1 Double Layers in the Auroral Circuit
192(3)
5.6.2 Solar Flares
195(5)
5.6.3 Double Radio Galaxies and Quasars
200(1)
5.6.4 Double Layers as a Source of Cosmic Radiation
200(1)
References
201(4)
6 Synchrotron Radiation
205(54)
6.1 Theory of Radiation from an Accelerated Charge
206(18)
6.1.1 The Induction Fields
208(1)
6.1.2 The Radiation Fields
209(5)
6.1.3 Radiation of an Accelerated Electron in a Magnetic Field
214(4)
6.1.4 Angular Distribution of the Radiation
218(2)
6.1.5 Frequency Distribution of the Radiation
220(4)
6.2 Field Polarization
224(3)
6.2.1 Polarization in the Plane of Rotation
224(2)
6.2.2 Polarization for Arbitrary Angles of Observation
226(1)
6.3 Radiation from an Ensemble of Electrons
227(5)
6.3.1 Velocity-Averaged Emissivity
227(2)
6.3.2 Emission from an Ensemble of Electrons
229(3)
6.4 Synchrotron Radiation from Z Pinches
232(4)
6.4.1 X Ray Emission
232(1)
6.4.2 X Ray Spectroscopy
233(1)
6.4.3 Morphology of the Thermal X Ray Source
234(2)
6.5 Particle-in-Cell Simulation of Synchrotron Processes
236(4)
6.5.1 Simulated Z Pinches
236(1)
6.5.2 Synchrotron Bursts from Simulated Z Pinches
237(1)
6.5.3 Synchrotron Source Radiation Patterns
238(2)
6.6 Synchrotron Radiation from Cosmic Sources
240(19)
6.6.1 Gross Radio Properties of Galaxies
240(3)
6.6.2 Double Radio Galaxies
243(4)
6.6.3 "Jets" and Superluminosity
247(2)
6.6.4 Quasars and Active Galaxy Nuclei
249(6)
6.6.5 X Ray and Gamma-Ray Sources
255(1)
References
256(3)
7 Transport of Cosmic Radiation
259(30)
7.1 Energy Transport in Plasma
260(7)
7.1.1 Group Velocity
263(4)
7.1.2 Time Rate of Decay of Wave Oscillations
267(1)
7.2 Applications of Geometrical Optics
267(8)
7.2.1 Basic Principle and Limitations of Geometrical Optics
268(4)
7.2.2 Equation of Transfer
272(3)
7.3 Black Body Radiation
275(1)
7.4 The Source Function and Kirchoff's Law
276(2)
7.4.1 Classical Limit of the Emission, Absorption, and Source Functions
277(1)
7.5 Self Absorption by Plasma Filaments
278(4)
7.6 Large-Scale, Random Magnetic Field Approximation
282(3)
7.6.1 Plasma Effects
283(1)
7.6.2 Monoenergetic Electrons
284(1)
7.7 Anisotropic Distribution of Velocities
285(4)
References
286(3)
8 Critical Ionization Effect in Interstellar Clouds
289(10)
8.1 Critical Ionization Velocity
289(1)
8.2 The CIV Process in Laboratory Experiments
289(1)
8.3 The CIV Process in Interstellar Space
290(3)
8.4 Neutral Hydrogen Emission Line Data
293(2)
8.5 The Relationship Between Observed HI Emission and CIV Data
295(4)
References
298(1)
9 Neutral Hydrogen Filaments and Dynamics of Galactic Bennett Pinches
299(12)
9.1 Interstellar Filaments
299(5)
9.2 Interstellar Filaments as Tracers of Current Flow
304(7)
References
308(3)
10 Particle-in-Cell Simulation of Cosmic Plasma
311(20)
10.1 "In-Situ" Observation of Cosmic Plasmas via Computer Simulation
311(1)
10.2 The History of Electromagnetic Particle-in-Cell Simulation
312(2)
10.3 The Laws of Plasma Physics
314(1)
10.4 Multidimensional Particle-in-Cell Simulation
315(4)
10.4.1 Sampling Constraints in Multidimensional Particle Codes
315(1)
10.4.2 Discretization in Time and Space
316(2)
10.4.3 Spectral Methods and Interpolation
318(1)
10.5 Techniques for Solution
319(4)
10.5.1 Leap-Frogging Particles Against Fields
320(1)
10.5.2 Particle Advance Algorithm
321(1)
10.5.3 Field Advance Algorithm
322(1)
10.6 Issues in Simulating Cosmic Phenomena
323(4)
10.6.1 Boundary Conditions
323(1)
10.6.2 Relativity
324(1)
10.6.3 Compression of Time Scales
324(1)
10.6.4 Collisions
325(2)
10.7 Gravitation
327(1)
10.8 Scaling Laws
327(1)
10.9 Data Management
328(3)
References
329(2)
11 Further Developments in Plasma Simulation
331(10)
11.1 Updates in Three-Dimensional, Electromagnetic Particle Simulation Models
331(1)
11.2 Astrophysical Plasma and Plasma Cosmology
331(1)
11.3 Advancement in Particle/Field Methodology
332(1)
11.4 Simulation Results
333(8)
11.4.1 Advances in the Setup of Geometries for Plasmas in Interstellar Space
336(2)
References
338(3)
12 Dynamics of Field--Aligned Currents in the Laboratory, Aurorae, and Galactic Space
341(20)
12.1 Formation and Dynamics of Laboratory Currents
341(6)
12.1.1 Formation and Evolution of Plasma Currents
341(2)
12.1.2 Evolution of Field-Aligned Currents
343(4)
12.2 Dense Plasma Focus (DPF)
347(1)
12.3 Evolution of Plasma Filaments via the Biot-Savart Force
348(1)
12.4 Birkeland's Terrella Experiments
349(3)
12.5 Birkeland's Trips to Egypt
352(2)
12.6 Macro-Terrella Experiments
354(1)
12.7 Properties of a Strong Aurora
354(1)
12.8 Temporal Occurrence and Properties of Intense Auroras
354(1)
12.9 The Carrington Event
355(2)
12.10 THEMIS Mission
357(4)
References
358(3)
13 Plasma Astrophysics
361(12)
13.1 The Cosmic--Triple--Jump
361(1)
13.2 Near-Earth Plasma Astrophysics
362(3)
13.2.1 "Earth--Currents"
362(1)
13.2.2 View of Birkeland Currents from lea and Palpa, Peru
363(1)
13.2.3 Mandalas or Concentric Circles in the Southern Hemisphere
364(1)
13.3 The Cosmic Nebula and Interstellar Clouds
365(2)
13.4 Galaxies in Plasma Cosmic Space
367(6)
13.4.1 Double Radio Galaxies
367(1)
13.4.2 Spiral Galaxies
368(2)
References
370(3)
A Transmission Lines
373(10)
A.1 Cosmic Filaments as Transmission Lines
373(1)
A.2 Definition of the State of the Line at a Point
374(1)
A.3 Primary Parameters
374(1)
A.4 General Equations
375(2)
A.4.1 The General Case
375(1)
A.4.2 The Special Case of the Lossless Line
376(1)
A.5 Heaviside's Operational Calculus (The Laplace Transform)
377(2)
A.5.1 The Propagation Function
377(2)
A.6 Characteristic Impedance
379(1)
A.7 Reflection Coefficients
379(1)
A.8 Time-Domain Reflectometry
380(3)
A.8.1 Cosmic Transmission-Line
381(1)
References
382(1)
B Polarization of Electromagnetic Waves in Plasma
383(8)
References
389(2)
C Dusty and Grain Plasmas
391(6)
C.1 Dusty Plasma
392(1)
C.2 Grain Plasma
392(5)
References
395(2)
D Some Useful Units and Constants
397(4)
Index 401
Anthony L. Peratt received his PhD in Electrical Engineering from the University of Southern California, Los Angeles (1971) and his MSEE in 1967 from USC as well. Dr. Peratt is a thirty-year technical and administrative staff member of the University of California, was a part of the technical staff of the Lawrence Livermore National Laboratory (1972-1979), a guest physicist at the Max Planck Institut für Plasmaphysik, Garching, Germany (19751977), as well as guest scientist at the Alfvén Laboratory, Royal Institute of Technology, Stockholm, Sweden (1985). Since 1981, Dr. Peratt has worked at the Los Alamos National Laboratory and was the Scientific Advisor to the United States Department of Energy (19951999) where he served a term as Acting Director, National Security, Nuclear Nonproliferation Directorate. Peratts research interests have included numerical and experimental contributions to high-energy density plasmas and intense particle beams, explosively-driven pulsed power generators, lasers, intense-power-microwave sources, particles, high energy density phenomena, Z-pinches, and inertially driven fusion target designs.1989 and the Guest Editor Transactions on Plasma Science, special issues on Space Plasmas 1986, 89, 90, 92, 2000, 2003, among many rolls he has had. He is a senior member the American Physical Society, American Astronomical Society, Eta Kappa Nu and has earned the United States Department of Energy Distinguished Performance Award in both 1987 and 1999. Dr. Peratt is the author/editor of the following Springer books: Physics of the Plasma Universe (1992); Plasma Astrophysics and Cosmology (1995); and Advanced Topics in Space and Astrophysical Plasmas (1997). Anthony Peratt is a Life Fellow of the IEEE, Senior Editor of the IEEE Transactions on Plasma Science, and Research Scholar, Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia.