Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physics of Radiation and Climate

  • Formāts: 513 pages
  • Izdošanas datums: 14-Oct-2015
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466572065
  • Formāts - PDF+DRM
  • Cena: 121,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 513 pages
  • Izdošanas datums: 14-Oct-2015
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466572065

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Our current climate is strongly influenced by atmospheric composition, and changes in this composition are leading to climate change. Physics of Radiation and Climate takes a look at how the outward flow of longwave or terrestrial radiation is affected by the complexities of the atmospheres molecular spectroscopy. This book examines the planet in its current state and considers the radiation fluxes, including multiple scattering, photochemistry, and the ozone layer, and their impact on our climate overall.



Starting from the physical fundamentals of how electromagnetic radiation interacts with the various components of the Earths atmosphere, the book covers the essential radiation physics leading to the radiative transfer equation. The book then develops the central physics of the interaction between electromagnetic radiation and gases and particles: absorption, emission, and scattering. It examines the physics that describes the absorption and emission of radiation, using quantum mechanics, and scattering, using electromagnetism. It also dedicates a detailed chapter to aerosols, now recognized as a key factor of climate change. Written to be used for a first course in climate physics or a physics elective, the text contains case studies, sample problems, and an extensive reference list as a guide for further research.

In addition, the authors:













Provide a complete derivation of molecular spectroscopy from quantum mechanical first principles Present a formal derivation of the scattering of radiation by molecules and particles Include the latest results from the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5)









Physics of Radiation and Climate shows how radiation measurements are used to aid our understanding of weather and climate change and provides an introduction to the atmosphere. This book covers the key branches of physics with a specific focus on thermodynamics, electromagnetism, and quantum mechanics.

Recenzijas

"Box and Box take the reader on a journey, a progression through interwoven topics that build on those that precede them. And regarding the range of styles exhibited in other texts, Physics of Radiation and Climate strikes a nice balance between physical insight and mathematical formalism. The breadth of topics is astounding. the Boxes have achieved their stated goal: they have managed to make radiation the focus of a climate-centric text directed to the senior undergraduate or entry-level graduate student." American Journal of Physics (review by Prof Peter Pilewskie, University of Colorado at Boulder), Jul 2016

"This is an outstanding textbook striking a perfect balance between physics, chemistry, modeling, and observation of the global climate. The choice and organization of topics are excellent. The book is extremely well written; contains a wealth of valuable material, especially on atmospheric radiation and remote sensing; and will serve as an excellent introductory text for senior undergraduate students. The informal narrative style makes the book a pleasure to read." Michael I. Mishchenko, NASA Goddard Institute for Space Studies

"The authors are eminently qualified to provide a clear, in-depth discussion of the physical basis for how the climate system works and why global climate is changing. This is a very readable yet thorough textbook covering the key climate system processes and issues ranging from environmental implications to the underlying physics." Andrew Lacis, NASA Climatologist, Goddard Institute for Space Studies, New York

" a valuable pedagogical addition to atmospheric and climate physics The authors apply their vast experiences as researchers and teachers to explain the physical basis of our climate system with a fresh and current perspective. Im looking forward to using their text in my own courses." Roger Davies, Buckley-Glavish Professor of Climate Physics, The University of Auckland

" an outstanding source of information in the field of atmospheric science. Although written in a very concise manner, the book not only provides all the important relations in the fields of physics and chemistry of our Earths atmosphere but also outlines how to derive them. I highly recommend it as a treasure of knowledge for an associated lecture course and as a fundamental source for advanced undergraduate and graduate students." Thomas Trautmann, Head of Atmospheric Processors Department, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

" an excellent textbook that introduces the reader to Earths climatic system and provides a thorough grounding in the science underlying issues of climate change. The clear physics emphasis sets this book apart from other introductory texts on meteorology and atmospheric science. The combination of basic physics and policy aspects will equip the reader to make informed contributions to the topical debate on climate change and its mitigation " David Leadley, Professor, Department of Physics, University of Warwick

"I think this is an excellent book for undergraduate and beginning graduate students." Donald J. Wuebbles, The Harry E. Preble Professor of Atmospheric Sciences, University of Illinois

"Students will greatly benefit from learning the physics of solar and thermal radiation from these two experts in the field." Sundar A. Christopher, Professor of Atmospheric Science and Dean of the College of Science, The University of Alabama in Huntsville

"The text is a model of clarity. I rate this a splendid addition to the university library or the bookshelf of the early career researcher in this rapidly growing field." Contemporary Physics (Nov 2017), review by Fredric W. Taylor, University of Oxford "Box and Box take the reader on a journey, a progression through interwoven topics that build on those that precede them. And regarding the range of styles exhibited in other texts, Physics of Radiation and Climate strikes a nice balance between physical insight and mathematical formalism. The breadth of topics is astounding. the Boxes have achieved their stated goal: they have managed to make radiation the focus of a climate-centric text directed to the senior undergraduate or entry-level graduate student." American Journal of Physics (review by Prof Peter Pilewskie, University of Colorado at Boulder), Jul 2016

"This is an outstanding textbook striking a perfect balance between physics, chemistry, modeling, and observation of the global climate. The choice and organization of topics are excellent. The book is extremely well written; contains a wealth of valuable material, especially on atmospheric radiation and remote sensing; and will serve as an excellent introductory text for senior undergraduate students. The informal narrative style makes the book a pleasure to read." Michael I. Mishchenko, NASA Goddard Institute for Space Studies

"The authors are eminently qualified to provide a clear, in-depth discussion of the physical basis for how the climate system works and why global climate is changing. This is a very readable yet thorough textbook covering the key climate system processes and issues ranging from environmental implications to the underlying physics." Andrew Lacis, NASA Climatologist, Goddard Institute for Space Studies, New York

" a valuable pedagogical addition to atmospheric and climate physics The authors apply their vast experiences as researchers and teachers to explain the physical basis of our climate system with a fresh and current perspective. Im looking forward to using their text in my own courses." Roger Davies, Buckley-Glavish Professor of Climate Physics, The University of Auckland

" an outstanding source of information in the field of atmospheric science. Although written in a very concise manner, the book not only provides all the important relations in the fields of physics and chemistry of our Earths atmosphere but also outlines how to derive them. I highly recommend it as a treasure of knowledge for an associated lecture course and as a fundamental source for advanced undergraduate and graduate students." Thomas Trautmann, Head of Atmospheric Processors Department, Deutsches Zentrum für Luftund Raumfahrt e.V. (DLR)

" an excellent textbook that introduces the reader to Earths climatic system and provides a thorough grounding in the science underlying issues of climate change. The clear physics emphasis sets this book apart from other introductory texts on meteorology and atmospheric science. The combination of basic physics and policy aspects will equip the reader to make informed contributions to the topical debate on climate change and its mitigation " David Leadley, Professor, Department of Physics, University of Warwick

"I think this is an excellent book for undergraduate and beginning graduate students." Donald J. Wuebbles, The Harry E. Preble Professor of Atmospheric Sciences, University of Illinois

"Students will greatly benefit from learning the physics of solar and thermal radiation from these two experts in the field." Sundar A. Christopher, Professor of Atmospheric Science and Dean of the College of Science, The University of Alabama in Huntsville

"The text is a model of clarity. I rate this a splendid addition to the university library or the bookshelf of the early career researcher in this rapidly growing field." Contemporary Physics (Nov 2017), review by Fredric W. Taylor, University of Oxford

Preface xv
Authors xvii
1 Our Planet and Its Physical Environment
1(20)
1.1 Atmospheric Energy Fluxes
2(4)
1.1.1 Energy Budget
2(1)
1.1.2 Greenhouse Effect
3(1)
1.1.2.1 Effective Temperature
3(1)
1.1.2.2 Greenhouse Gases
4(1)
1.1.2.3 Changing Atmospheric Composition
5(1)
1.2 Weather and Climate
6(5)
1.2.1 Weather
6(1)
1.2.1.1 Weather/Climate Statistics
6(2)
1.2.2 Climate
8(1)
1.2.2.1 Climate Change
8(1)
1.2.2.2 Temperature Record
8(1)
1.2.2.3 Other Indicators
9(2)
1.3 Intergovernmental Panel on Climate Change
11(2)
1.3.1 Roles of IPCC
11(1)
1.3.1.1 Assessment Reports
11(1)
1.3.1.2 Evolution
12(1)
1.3.2 UN Climate Convention
12(1)
1.3.2.1 Kyoto Protocol
13(1)
1.4 Climate System
13(3)
1.4.1 Atmosphere
14(1)
1.4.1.1 Vertical Structure
14(1)
1.4.1.2 Greenhouse Gases
15(1)
1.4.1.3 Aerosols and Clouds
15(1)
1.4.2 Interface Components
15(1)
1.4.2.1 Cryosphere
15(1)
1.4.2.2 Oceans
16(1)
1.4.2.3 Biosphere
16(1)
1.5 Path Ahead
16(5)
1.5.1 Structure of the Book
17(1)
1.5.2 Physics and Climate
18(3)
2 Atmospheric Thermodynamics
21(28)
2.1 Thermal Properties of Gases
21(5)
2.1.1 Thermodynamic Variables
22(1)
2.1.1.1 Pressure
22(1)
2.1.1.2 Temperature
22(1)
2.1.1.3 Density
23(1)
2.1.1.4 Air Parcel
23(1)
2.1.2 Equation of State for an Ideal Gas
23(1)
2.1.2.1 Mixtures of Gases
24(1)
2.1.2.2 Other Equations of State
24(1)
2.1.3 Kinetic Theory of Gases
25(1)
2.1.3.1 Mean Free Path
26(1)
2.2 Hydrostatic Equilibrium
26(3)
2.2.1 Hydrostatic Equation
26(1)
2.2.2 Lapse Rate
27(1)
2.2.3 Geopotential
27(1)
2.2.4 Hypsometric Equation
27(1)
2.2.5 Reduction to Sea Level
28(1)
2.2.6 Atmospheric Profiles
28(1)
2.3 Dry Thermodynamics
29(4)
2.3.1 First Law of Thermodynamics
29(2)
2.3.2 Enthalpy
31(1)
2.3.3 Adiabatic Processes
31(1)
2.3.3.1 Potential Temperature
32(1)
2.3.3.2 Dry Adiabatic Lapse Rate
32(1)
2.4 Water Vapour in the Atmosphere
33(2)
2.4.1 Latent Heat
33(1)
2.4.2 Equation of State for Water Vapour
33(1)
2.4.3 Virtual Temperature
33(1)
2.4.4 Moisture Parameters
34(1)
2.5 Second Law of Thermodynamics
35(4)
2.5.1 Carnot Cycle
35(2)
2.5.2 Entropy
37(1)
2.5.2.1 Thermodynamic Potentials
38(1)
2.6 Saturation
39(4)
2.6.1 Clausius--Clapeyron Equation
39(2)
2.6.1.1 Boiling Point
41(1)
2.6.2 Saturated Adiabatic Lapse Rate
42(1)
2.6.2.1 Dew Point Lapse Rate
42(1)
2.7 Thermodynamic Diagrams
43(6)
2.7.1 Examples of Thermodynamic Diagrams
43(1)
2.7.1.1 Clapeyron Diagram
43(1)
2.7.1.2 Stuve or Pseudoadiabatic Chart
43(1)
2.7.1.3 Emagram
44(1)
2.7.1.4 Tephigram
44(1)
2.7.1.5 Skew T -- log p Diagram
44(1)
2.7.2 Water Vapour on Thermodynamic Diagrams
44(1)
2.7.2.1 Saturation Mixing Ratio Isopleths
44(1)
2.7.2.2 Saturated Adiabats
45(1)
2.7.3 Elevation of Moist Air
45(1)
2.7.3.1 Height of the LCL
46(1)
2.7.3.2 Equivalent Potential Temperature
46(1)
Synopsis
46(1)
Exercises
47(2)
3 Cloud Physics
49(22)
3.1 Atmospheric Stability
50(3)
3.1.1 Vertical Stability
50(1)
3.1.1.1 Absolute Stability
51(1)
3.1.1.2 Absolute Instability
51(1)
3.1.1.3 Conditional Instability
51(1)
3.1.1.4 Potential Instability
52(1)
3.1.2 Buoyancy
52(1)
3.1.2.1 Convective Available Potential Energy (CAPE)
53(1)
3.2 Cloud Formation and Classification
53(3)
3.2.1 Cloud Formation by Air Mass Mixing
53(1)
3.2.2 Fog
54(1)
3.2.3 Lifting
54(1)
3.2.3.1 Orographic Lifting
54(1)
3.2.3.2 Frontal Lifting
55(1)
3.2.3.3 Low-Pressure Centres
55(1)
3.2.3.4 Instability
55(1)
3.2.3.5 Marine Boundary Layer Clouds
55(1)
3.2.4 Cloud Classification
55(1)
3.3 Cloud Droplet Formation
56(3)
3.3.1 Kelvin's Equation
56(2)
3.3.2 Activation
58(1)
3.3.2.1 Cloud Condensation Nuclei
59(1)
3.4 Cloud Droplet Growth
59(3)
3.4.1 Terminal Velocity
59(1)
3.4.2 Growth by Condensation
60(1)
3.4.3 Growth by Coalescence
61(1)
3.4.4 Microphysics of Cold Clouds
61(1)
3.4.4.1 The Bergeron--Findeisen Process
62(1)
3.5 Precipitation
62(3)
3.5.1 Precipitation Types
62(1)
3.5.1.1 Rain
62(1)
3.5.1.2 Snow
63(1)
3.5.1.3 Sleet
63(1)
3.5.1.4 Precipitation Rate
63(1)
3.5.2 Weather Radar
63(1)
3.5.3 Weather Modification
64(1)
3.6 Atmospheric Electricity
65(6)
3.6.1 Atmospheric Electric Field
65(1)
3.6.1.1 Atmospheric Electric Circuit
65(1)
3.6.1.2 Sprites, Elves and Blue Jets
66(1)
3.6.2 Thunderstorm Electrification
66(1)
3.6.2.1 Lightning
67(1)
Synopsis
68(1)
Exercises
68(3)
4 Atmospheric Chemistry
71(34)
4.1 Composition and Chemistry of the Atmosphere
72(4)
4.1.1 Permanent Gases
72(1)
4.1.2 Background Tropospheric Chemistry
73(1)
4.1.2.1 NOx--O3 System
74(1)
4.1.2.2 Hydroxyl Radical
74(1)
4.1.2.3 Organic Compounds
75(1)
4.1.2.4 Sulphur Gases
75(1)
4.2 Atmospheric Pollution
76(6)
4.2.1 Historical Perspectives
76(1)
4.2.1.1 London-Type Smog
76(1)
4.2.1.2 Growing Awareness
77(1)
4.2.2 Photochemical Smog
77(1)
4.2.3 Acid Precipitation
78(1)
4.2.3.1 Impacts
79(1)
4.2.4 Control Strategies
79(1)
4.2.4.1 Technologies
79(1)
4.2.4.2 Regulation
80(1)
4.2.4.3 Mortality
81(1)
4.2.4.4 Implications
81(1)
4.3 Ocean Chemistry
82(3)
4.3.1 Sea Salt Composition
82(1)
4.3.1.1 Equation of State
83(1)
4.3.2 Carbon in Oceans
83(1)
4.3.2.1 Primary Production in Oceans
84(1)
4.4 Stable and Unstable Isotopes
85(4)
4.4.1 Natural Radioactivity
86(1)
4.4.1.1 Uranium--Thorium--Lead System
86(1)
4.4.1.2 Potassium--Argon
87(1)
4.4.2 Carbon-14
87(1)
4.4.2.1 Beryllium
87(1)
4.4.3 Use of Stable Isotopes
88(1)
4.4.3.1 Oxygen-18
88(1)
4.4.3.2 Carbon-13
88(1)
4.4.3.3 Deuterium
88(1)
4.4.3.4 Nitrogen-15
89(1)
4.5 Biogeochemical Cycles
89(6)
4.5.1 Carbon Cycle
89(1)
4.5.1.1 Geological Processes
90(1)
4.5.1.2 Biospheric CO2 Exchange
91(1)
4.5.1.3 Atmospheric CH4 and CO
91(1)
4.5.2 Oxygen Cycle
92(1)
4.5.3 Nitrogen Cycle
92(2)
4.5.4 Sulphur Cycle
94(1)
4.5.5 Chlorine Cycle
95(1)
4.6 Monitoring and Modelling
95(3)
4.6.1 Monitoring
95(1)
4.6.2 Diffusion
96(1)
4.6.3 Modelling
97(1)
4.6.3.1 Chemical Transport Modelling
97(1)
4.7 Lessons from the History of Our Atmosphere
98(7)
4.7.1 Early Atmosphere
98(1)
4.7.1.1 Rise of Oxygen
99(1)
4.7.2 Temperature History
99(1)
4.7.3 Gaia Hypothesis
100(1)
4A Appendix
101(2)
Synopsis
103(1)
Exercises
104(1)
5 Aerosols
105(28)
5.1 Aerosols: Types and Classification
105(6)
5.1.1 Primary Aerosols
106(1)
5.1.1.1 Mineral Dust
106(1)
5.1.1.2 Sea Salt
107(1)
5.1.1.3 Biological
107(1)
5.1.1.4 Smoke
107(1)
5.1.1.5 Volcanoes
107(1)
5.1.1.6 Anthropogenic
108(1)
5.1.2 Secondary Aerosols
108(1)
5.1.2.1 Sulphates
108(1)
5.1.2.2 Nitrates
108(1)
5.1.2.3 Organics
109(1)
5.1.3 Stratospheric Aerosols
109(1)
5.1.3.1 Meteoric Debris
110(1)
5.1.3.2 Background Sulphate Layer
110(1)
5.1.3.3 Volcanic Sulphate Aerosols
110(1)
5.1.3.4 Polar Stratospheric Clouds
110(1)
5.1.4 Overview
111(1)
5.2 Aerosols in the Atmosphere
111(5)
5.2.1 Atmospheric Processing
112(1)
5.2.1.1 Coagulation
112(1)
5.2.1.2 Condensation
112(1)
5.2.1.3 Water Uptake
112(1)
5.2.1.4 Chemical Processes
113(1)
5.2.2 Aerosol Modelling
113(1)
5.2.2.1 Size Distribution
113(1)
5.2.2.2 Analytical Models
114(1)
5.2.2.3 Physical Models
115(1)
5.2.3 Transport and Removal
115(1)
5.2.3.1 Removal Processes
116(1)
5.2.3.2 Chemical Transport Modelling
116(1)
5.3 Aerosol Effects
116(3)
5.3.1 Light Scattering
117(1)
5.3.2 Human Health
118(1)
5.4 Investigating Aerosols
119(14)
5.4.1 Aerosol Instrumentation
119(1)
5.4.1.1 Particle Counters/Sizers
120(1)
5.4.1.2 Aerosol Mass Spectrometers
120(1)
5.4.1.3 Aerosol Samplers
120(1)
5.4.2 Smog Chamber Studies
121(1)
5.4.3 Aerosol Scattering and Absorption
121(1)
5.4.3.1 Nephelometers
122(1)
5.4.3.2 Absorption
123(1)
5.4.4 Analysis of Bulk Samples
124(1)
5.4.4.1 Ion Beam Analysis (IBA)
124(1)
5.4.4.2 Ion Chromatography (IC)
124(1)
5.4.4.3 Thermodynamic Modelling
125(1)
5.4.4.4 Example: Australian Desert Dust
125(1)
5.4.5 Analysis of Organic Aerosols
125(1)
5.4.5.1 Gas Chromatography/Mass Spectrometry (GC/MS)
126(1)
5.4.5.2 High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS)
126(1)
5.4.6 Source Apportionment
127(1)
5.4.6.1 Example: Sydney Aerosol
128(1)
5.4.7 Field Campaigns
128(3)
Synopsis
131(1)
Exercises
132(1)
6 Circulation of Atmosphere and Oceans
133(22)
6.1 Forces on Fluids
134(2)
6.1.1 Pressure Gradient Force
134(1)
6.1.2 Coriolis Force
134(1)
6.1.3 Geostrophic Winds
135(1)
6.1.4 Friction and Surface Winds
135(1)
6.2 Atmospheric Energy Distribution
136(3)
6.2.1 Potential Energy
136(1)
6.2.1.1 Available Potential Energy
137(1)
6.2.1.2 Atmospheric Heat Engine
137(1)
6.2.2 Pressure Variation in the Vertical
137(1)
6.2.2.1 Thermal Circulation
138(1)
6.3 Atmospheric Circulation
139(4)
6.3.1 Hadley Circulation
139(1)
6.3.1.1 Observed Circulation
140(1)
6.3.1.2 Vertical Air Motions
140(1)
6.3.1.3 Upper Air Motion
140(1)
6.3.1.4 Hydrologic Circulation
141(1)
6.3.2 Mid-Latitude Transport
141(1)
6.3.2.1 Air Masses and Fronts
142(1)
6.3.2.2 Mid-Latitude Cyclones
142(1)
6.4 Ocean Circulation
143(3)
6.4.1 Structure of the Ocean
143(1)
6.4.1.1 Surface Currents
143(2)
6.4.2 Deep Ocean Circulation
145(1)
6.4.2.1 Climatic Implications
146(1)
6.5 El Nino Southern Oscillation
146(4)
6.5.1 Mechanism
147(1)
6.5.1.1 Historical Observations
147(1)
6.5.1.2 Phenomenology
147(2)
6.5.1.3 Bjerknes Hypothesis
149(1)
6.5.2 Climatic Effects
149(1)
6.5.2.1 Global Impacts
149(1)
6.5.2.2 Australian Impacts
150(1)
6.6 Other Modes of Variability
150(5)
6.6.1 Pacific Decadal Oscillation
150(1)
6.6.2 North Atlantic Oscillation
151(1)
6.6.3 Indian Ocean Dipole
151(1)
6.6.4 Southern Annular Mode
152(1)
6.6.5 Australian Rainfall Anomalies
152(1)
Synopsis
153(1)
Exercises
153(2)
7 Fluid Dynamics
155(18)
7.1 Fluid Kinematics
155(2)
7.1.1 Material Derivative
156(1)
7.1.2 Rotating Frames of Reference
156(1)
7.2 Fluid Mechanics
157(3)
7.2.1 Forces on a Fluid
157(1)
7.2.1.1 Gravitational Force
158(1)
7.2.1.2 Pressure Gradient Force
158(1)
7.2.1.3 Viscosity
158(1)
7.2.1.4 Momentum Equation
159(1)
7.2.2 Spherical Coordinates
159(1)
7.2.2.1 Approximations
159(1)
7.2.2.2 Tangent Plane
160(1)
7.3 Prognostic Equations
160(3)
7.3.1 Isobaric Coordinates
161(1)
7.3.2 Continuity Equation
161(1)
7.3.2.1 Incompressible Fluids
162(1)
7.3.2.2 Isobaric Coordinates
162(1)
7.3.3 Primitive Equations
162(1)
7.3.3.1 Thermodynamic Energy Equation
163(1)
7.4 Applications
163(3)
7.4.1 Geostrophic Wind
163(1)
7.4.1.1 Isobaric Form
164(1)
7.4.2 Other Balanced Flows
164(1)
7.4.2.1 Gradient Wind
164(1)
7.4.2.2 Thermal Wind
165(1)
7.4.3 Atmospheric Waves
165(1)
7.4.3.1 Vorticity
165(1)
7.4.3.2 Rossby Waves
165(1)
7.4.3.3 Other Types of Waves
166(1)
7.5 Boundary Layer
166(2)
7.5.1 Reynolds Stresses
166(1)
7.5.2 Ekman's Solution
167(1)
7.5.2.1 Ekman Pumping
168(1)
7.6 Ocean Fluid Mechanics
168(5)
7.6.1 Geostrophic Flow
169(1)
7.6.2 Ekman Transport
169(1)
7.6.3 Sverdrup Balance
170(1)
Synopsis
170(1)
Exercises
171(2)
8 Radiative Interactions
173(20)
8.1 Formulation
173(6)
8.1.1 Radiometric Quantities
174(1)
8.1.1.1 Radiation Pressure
175(1)
8.1.1.2 Propagation of Radiation in Vacuo
175(1)
8.1.2 Absorption, Emission and Scattering
176(1)
8.1.2.1 Attenuation
176(1)
8.1.2.2 Emission
177(1)
8.1.2.3 Equation of Radiative Transfer
178(1)
8.2 Thermal Radiation
179(5)
8.2.1 Thermodynamics of Heat Radiation
179(2)
8.2.2 Einstein Coefficients and Planck's Law
181(2)
8.2.2.1 Limiting Cases
183(1)
8.2.2.2 Monotonicity
184(1)
8.3 Radiation and Matter
184(3)
8.3.1 Equilibrium between Thermal Radiation and Matter
184(1)
8.3.2 Einstein Coefficients and Bulk Coefficients
185(1)
8.3.3 Brightness, Colour and Effective Temperatures
186(1)
8.3.4 Planetary Effective Temperatures
187(1)
8.4 Radiative Transfer
187(6)
8.4.1 Simple Cases
188(1)
8.4.1.1 Formal Solution
188(1)
8.4.2 Coordinate Systems
188(2)
8.4.3 Non-Emitting Atmospheres
190(1)
8.4.4 Diffusive Equilibrium in a Star
190(1)
Synopsis
191(1)
Exercises
192(1)
9 Absorption and Emission of Radiation
193(30)
9.1 Electromagnetic Radiation
195(3)
9.1.1 Electromagnetic Fields and Waves
195(1)
9.1.1.1 Notations
196(1)
9.1.2 Dipole Radiation
197(1)
9.2 Classical Absorption and Emission
198(2)
9.2.1 Radiation from a Classical Atom
198(1)
9.2.2 Broadening of Spectral Lines
199(1)
9.2.2.1 Pressure Broadening
199(1)
9.2.2.2 Doppler Broadening
200(1)
9.2.2.3 Profile Functions
200(1)
9.3 Quantum Mechanical Transition Probabilities
200(6)
9.3.1 Transition Probability
201(1)
9.3.1.1 Hamiltonian
201(1)
9.3.1.2 Transitions
202(1)
9.3.1.3 Absorption
203(1)
9.3.1.4 Emission
203(1)
9.3.1.5 Relation to Einstein Coefficients
203(1)
9.3.2 Dipole Approximation
204(1)
9.3.2.1 Degenerate Levels
205(1)
9.3.2.2 Selection Rules
205(1)
9.3.3 Oscillator Strengths
206(1)
9.4 Molecular Structure
206(4)
9.4.1 Molecular Degrees of Freedom
207(1)
9.4.1.1 Born--Oppenheimer Separation
207(1)
9.4.2 Symmetries of Diatomic Molecules
208(1)
9.4.3 Hydrogen Molecule-Ion
209(1)
9.5 Molecular Spectroscopy
210(6)
9.5.1 Rotation and Vibration of Diatomic Molecules
211(1)
9.5.1.1 Rotation
211(1)
9.5.1.2 Vibration
211(1)
9.5.1.3 Morse Potential
212(1)
9.5.1.4 Centrifugal Distortion
212(1)
9.5.2 Molecular Rotational Spectra
212(1)
9.5.2.1 Diatomic Molecules
212(1)
9.5.2.2 Polyatomic Molecules
213(1)
9.5.3 Molecular Vibrational--Rotational Spectra
213(1)
9.5.3.1 Raman Scattering
214(1)
9.5.4 Molecular Electronic Spectra
215(1)
9.5.4.1 Further Considerations
215(1)
9.5.5 Line Intensities
215(1)
9.6 Infrared Spectroscopy of Atmospheric Gases
216(7)
9.6.1 Water Vapour
216(1)
9.6.2 Carbon Dioxide
217(1)
9.6.3 Ozone
217(1)
9.6.4 Methane
217(1)
9.6.5 Nitrous Oxide
217(1)
9.6.6 Chlorofluorocarbons
217(1)
9A Appendix
218(1)
Synopsis
219(1)
Exercises
220(3)
10 Scattering of Radiation
223(30)
10.1 Scattering Formalism
223(5)
10.1.1 Scattering Amplitude and Cross Sections
224(1)
10.1.1.1 Optical Theorem
224(1)
10.1.2 Medium of Scatterers
225(2)
10.1.3 Polarization of Scattered Light
227(1)
10.2 Small Particle Scattering
228(6)
10.2.1 Thomson Scattering
228(3)
10.2.2 Rayleigh Scattering
231(1)
10.2.3 Propagation in a Classical Gas
232(1)
10.2.3.1 Volume Scattering Coefficient
233(1)
10.2.3.2 Molecular Optical Thickness
233(1)
10.2.3.3 Molecular Anisotropy
233(1)
10.2.4 Propagation in a Free Electron Gas
234(1)
10.3 Mie Scattering
234(7)
10.3.1 Mie Scattering Amplitudes
234(2)
10.3.1.1 Efficiency Factors
236(1)
10.3.1.2 Scattering Matrix
237(1)
10.3.2 Limiting Cases
238(1)
10.3.2.1 Small-Size Parameters
238(1)
10.3.2.2 Large-Size Parameters
238(1)
10.3.2.3 Diffraction Approximation
239(1)
10.3.3 Van de Hulst's Approximation
239(1)
10.3.4 Scattering by a Population of Scatterers
240(1)
10.4 Scattering by Nonspherical Scatterers
241(2)
10.4.1 Discrete Dipole Approximation
242(1)
10.4.2 T-Matrix Method
242(1)
10.5 Optical Properties of Aerosols and Clouds
243(3)
10.5.1 Aerosol Types and Models
243(1)
10.5.2 Internal Mixtures
244(1)
10.5.3 OPAC Database
245(1)
10.6 Properties of the Dielectric Constant
246(7)
10.6.1 Maxwell's Equations in Material Media
246(1)
10.6.2 Analytic Properties of the Dielectric Constant
247(1)
10.6.3 Kramers--Kronig Relations
248(1)
10.6.3.1 Sum Rules
249(1)
10A Appendix
249(1)
Synopsis
250(1)
Exercises
251(2)
11 Multiple Scattering
253(32)
11.1 Formalism
254(3)
11.1.1 Multiple Scattering Equations
254(1)
11.1.1.1 Integra-Differential Equation
254(1)
11.1.1.2 Boundary Conditions
255(1)
11.1.1.3 Inhomogeneous Atmospheres
255(1)
11.1.1.4 Integral Equation
255(1)
11.1.2 Reflection and Transmission
255(1)
11.1.2.1 Reciprocity
256(1)
11.1.3 Inclusion of Polarization
256(1)
11.1.3.1 Oriented Ice Particles
257(1)
11.2 Fourier Decomposition
257(3)
11.2.1 Phase Function Expansion
258(1)
11.2.1.1 Flux Calculations
258(1)
11.2.1.2 Henyey--Greenstein Phase Function
259(1)
11.2.2 δ-Scaling of the Phase Function
259(1)
11.3 Limiting Cases
260(4)
11.3.1 Single Scattering Approximation
261(1)
11.3.2 Successive Orders of Scattering
261(1)
11.3.2.1 Numerical Iteration
262(1)
11.3.3 Singular Eigenfunction Method
262(2)
11.3.3.1 Diffusion
264(1)
11.4 Two-Stream Methods
264(5)
11.4.1 Two-Stream Equation
264(2)
11.4.2 Eddington's Approximation
266(1)
11.4.3 Generalization
267(1)
11.4.4 Application
268(1)
11.4.4.1 Nonabsorbing Case
268(1)
11.4.4.2 Absorbing Case
268(1)
11.5 Discrete Ordinates Method
269(2)
11.5.1 Quadrature
269(1)
11.5.2 Solution
269(1)
11.5.3 Full Solution
270(1)
11.5.4 Four-Stream Method
270(1)
11.6 Principles of Invariance
271(4)
11.6.1 Reflection from a Semi-Infinite Atmosphere
271(1)
11.6.1.1 H-Function
272(1)
11.6.2 Finite Layers
273(1)
11.6.2.1 Invariant Imbedding
273(1)
11.6.2.2 Adding-Doubling Method
273(1)
11.6.3 Surface Reflection
274(1)
11.7 Selection of Other Methods
275(3)
11.7.1 Spherical Harmonics Method
276(1)
11.7.2 Monte Carlo
277(1)
11.7.3 Radiative Transfer in 3D
277(1)
11.8 Radiative Perturbation Theory
278(7)
11.8.1 Operator Notation
278(1)
11.8.1.1 Transport Operator
278(1)
11.8.1.2 Adjoint Operator
279(1)
11.8.1.3 Adjoint Transport Equation
279(1)
11.8.2 Radiative Effects
280(1)
11.8.3 Perturbation Theory
281(1)
11.8.3.1 Formulation
281(1)
11.8.3.2 Perturbation Integral
282(1)
11.8.3.3 Perturbation Series
282(1)
Synopsis
283(1)
Exercises
283(2)
12 Solar Radiation and Its Atmospheric Interactions
285(28)
12.1 Solar Radiation and Its Variations
286(6)
12.1.1 Generation of Energy in the Sun
286(1)
12.1.1.1 Hydrogen Burning
286(1)
12.1.1.2 Other Reactions
287(1)
12.1.1.3 Solar Neutrinos
287(1)
12.1.2 Solar Constant and Solar Spectrum
288(1)
12.1.2.1 Sunspot Cycle
289(1)
12.1.2.2 Variations on Longer Timescales
290(1)
12.1.3 Earth's Orbit and Solar Insolation
290(1)
12.1.3.1 Solar Zenith Angle
291(1)
12.1.3.2 Solar Insolation
292(1)
12.2 Absorption of Solar Radiation
292(5)
12.2.1 Absorption in the UV
293(1)
12.2.1.1 Chapman Function
294(1)
12.2.2 Ionosphere
295(1)
12.2.2.1 Signal Propagation
296(1)
12.2.3 Absorption in the Visible and Near IR
296(1)
12.3 Ozone Layer
297(5)
12.3.1 Formation of the Ozone Layer
297(2)
12.3.1.1 Dobson Units
299(1)
12.3.2 Catalytic Destruction
299(1)
12.3.2.1 Hydroxyl Radical
299(1)
12.3.2.2 Nitrogen Oxides
300(1)
12.3.2.3 Halogens
300(1)
12.3.3 Biological Effects of UV Radiation
300(2)
12.4 Ozone Hole
302(4)
12.4.1 Chlorofluorocarbons
302(1)
12.4.1.1 Heterogeneous Chemistry
302(1)
12.4.1.2 Antarctic Winter
303(1)
12.4.2 Montreal Protocol
304(1)
12.4.2.1 Future Projections
305(1)
12.4.3 (Political) History Lesson
305(1)
12.5 Scattering of Solar Radiation
306(7)
12.5.1 Molecular Scattering
306(1)
12.5.2 Aerosols
307(1)
12.5.3 Visibility
307(2)
12.5.3.1 Deciview
309(1)
12.5.4 Cloud Scattering
309(1)
12.5.4.1 Cloud Absorption
310(1)
12.5.5 Surface Reflection
310(1)
12.5.5.1 Surface Albedo
310(1)
12.5.5.2 Spectral Variation
311(1)
12.5.5.3 Angular Distribution
311(1)
Synopsis
312(1)
Exercises
312(1)
13 Thermal Radiation Transfer
313(20)
13.1 Grey Atmosphere Models
313(5)
13.1.1 Simple Layer Models
314(1)
13.1.1.1 Simplest Case
314(1)
13.1.1.2 Extending the Model
314(1)
13.1.1.3 Multilayer Model
315(1)
13.1.2 Radiative Equilibrium in a Grey Atmosphere
316(2)
13.2 Transmittance
318(3)
13.2.1 Formulation
318(1)
13.2.2 Diffusivity
319(1)
13.2.3 Line-by-Line Calculation
320(1)
13.3 Band Models
321(4)
13.3.1 Single Spectral Line
321(1)
13.3.1.1 Path Transmission
322(1)
13.3.2 Regular Band Model
322(2)
13.3.3 Random Band Model
324(1)
13.3.3.1 Summary and Comparison
325(1)
13.4 k-Distribution Method
325(2)
13.4.1 Nonhomogeneous Atmospheres
325(1)
13.4.2 Infrared Transfer in Cloudy Atmospheres
326(1)
13.5 Broadband Approaches
327(1)
13.5.1 Broadband Emissivity
327(1)
13.5.2 Newtonian Cooling Approximation
328(1)
13.6 Radiative--Convective Modelling
328(5)
13.6.1 Radiative Model
329(1)
13.6.2 Convective Adjustment
329(1)
Synopsis
330(1)
Exercises
331(2)
14 Remote Sensing
333(34)
14.1 Passive Sensing via Extinction
334(6)
14.1.1 Ground-Based Extinction Measurements
334(1)
14.1.1.1 Calibration
335(1)
14.1.2 Applications
336(1)
14.1.2.1 Column Ozone
336(1)
14.1.2.2 Aerosol Parameters
336(1)
14.1.2.3 Size Distribution
337(1)
14.1.3 Limb Extinction
337(1)
14.1.3.1 SAM and SAGE
338(1)
14.1.3.2 ATMOS
338(1)
14.1.4 Inversion
338(2)
14.2 Passive Sensing via Scattering
340(3)
14.2.1 Ground-Based Aerosol Observations from Scattered Sunlight
340(1)
14.2.2 Ozone
340(1)
14.2.2.1 Total Ozone Mapping Spectrometer
341(1)
14.2.3 Surface Imaging
341(1)
14.2.3.1 Clouds
342(1)
14.2.3.2 Vegetation
342(1)
14.2.3.3 Ocean Colour
342(1)
14.2.4 Aerosols
343(1)
14.2.4.1 Combined BRDF-Aerosol Retrievals
343(1)
14.3 Passive Sensing via Emission
343(3)
14.3.1 Theoretical Framework
344(1)
14.3.1.1 Microwaves
345(1)
14.3.2 Applications
345(1)
14.3.2.1 Temperature Profiling
345(1)
14.3.2.2 Trace Species
345(1)
14.3.2.3 Limb Profiling
346(1)
14.4 Active Remote Sensing
346(5)
14.4.1 Radar
347(1)
14.4.1.1 Radar Equation
347(1)
14.4.1.2 Weather Radar
347(1)
14.4.2 LIDAR
348(1)
14.4.2.1 Lidar Equation
348(1)
14.4.2.2 Aerosol and Cloud Studies
349(1)
14.4.2.3 Differential Absorption
350(1)
14.5 Meteorological Data Acquisition
351(3)
14.5.1 Geostationary Satellites
352(1)
14.5.1.1 Future Plans
353(1)
14.5.2 Polar Orbiting Satellites
353(1)
14.5.2.1 Advanced Microwave Sounding Unit
353(1)
14.5.2.2 Advanced Very High Resolution Radiometer
353(1)
14.5.2.3 High Resolution Infrared Radiation Sounder
353(1)
14.5.2.4 Solar Backscatter Ultraviolet Spectral Radiometer
354(1)
14.6 Environmental Remote Sensing: Selected Historical Missions
354(3)
14.6.1 Nimbus-7
354(1)
14.6.2 Uars
355(1)
14.6.3 Adeos
355(1)
14.6.3.1 Polder
356(1)
14.7 Environmental Remote Sensing: Current Missions
357(10)
14.7.1 Terra
357(1)
14.7.1.1 Modis
357(1)
14.7.1.2 Misr
358(1)
14.7.1.3 Ceres
358(1)
14.7.1.4 Mopitt
358(1)
14.7.1.5 Aster
359(1)
14.7.2 Afternoon Constellation
359(1)
14.7.2.1 Gcom-W1
359(1)
14.7.2.2 Aqua
360(1)
14.7.2.3 Calipso
360(1)
14.7.2.4 CloudSat
360(1)
14.7.2.5 Parasol
360(1)
14.7.2.6 Aura
360(1)
14.7.2.7 OCO-2
361(1)
14.7.3 The European Space Agency
361(1)
14.7.3.1 Envisat
361(1)
14.7.3.2 Sciamachy
361(1)
14A Appendix
362(2)
Synopsis
364(1)
Exercise
365(2)
15 Inversion Methods for Indirect Measurements
367(24)
15.1 Linear Systems
368(2)
15.1.1 `Textbook' Examples
368(1)
15.1.2 Linear Models
369(1)
15.2 Matrix Algebra: A Review
370(3)
15.2.1 Vectors and Matrices
370(1)
15.2.1.1 Inverse of a Matrix
370(1)
15.2.2 Eigenvalues and Eigenvectors
371(1)
15.2.2.1 Eigensystems
372(1)
15.2.3 Quadratic Forms
373(1)
15.3 Linear Inversion Problems
373(4)
15.3.1 Formalism
374(1)
15.3.1.1 Example
374(1)
15.3.2 Ill-Posed Problems
375(1)
15.3.2.1 Physical Kernels
375(1)
15.3.2.2 Function Spaces
375(1)
15.3.3 Direct Inversion
376(1)
15.3.3.1 Least Squares Solution
376(1)
15.4 Regularization
377(2)
15.4.1 Smoothness Constraints
377(1)
15.4.2 Biased Inversions
378(1)
15.4.3 Filter Factor
378(1)
15.4.4 Applications
379(1)
15.5 Singular Function Theory
379(2)
15.5.1 Expansion Theories
380(1)
15.5.2 Convergence
380(1)
15.5.3 Regularization
380(1)
15.6 Information Content
381(3)
15.6.1 Interdependence of the Kernels
381(1)
15.6.2 Measurement Prediction
382(1)
15.6.3 Applications
383(1)
15.6.3.1 Measurement Selection
384(1)
15.6.3.2 Contaminated Measurements
384(1)
15.7 Retrieving Temperature Profiles
384(2)
15.8 Model Fitting
386(1)
15.8.1 Parameter Estimation
386(1)
15.8.2 Example
386(1)
15.8.3 Look-Up Tables
387(1)
15.9 Component Retrieval Using Perturbation Theory
387(4)
Synopsis
388(1)
Exercise
389(2)
16 Disequilibria in the Climate System
391(30)
16.1 Greenhouse Effect Revisited
393(1)
16.2 Recent Changes in Greenhouse Gas Concentrations
393(5)
16.2.1 Carbon Dioxide
394(1)
16.2.1.1 Sources and Sinks
394(2)
16.2.2 Other Gases
396(1)
16.2.2.1 Methane
396(1)
16.2.2.2 Nitrous Oxide
397(1)
16.2.2.3 Halogenated Compounds
397(1)
16.2.2.4 Ozone
397(1)
16.2.2.5 Indirect Effects from Atmospheric Chemistry
398(1)
16.3 Radiative Forcing by Gaseous Absorption
398(3)
16.3.1 Radiative Forcing
398(1)
16.3.2 Global Warming Potential
399(2)
16.4 Direct Radiative Forcing by Aerosols
401(4)
16.4.1 Aerosol Direct Effect
401(1)
16.4.2 Radiative Forcing
402(1)
16.4.2.1 Satellite Observations
402(1)
16.4.3 Key Species Contributions
403(1)
16.4.3.1 Sulphate Aerosols
403(1)
16.4.3.2 Black Carbon from Fossil Fuels
404(1)
16.4.3.3 Mineral Dust
404(1)
16.4.3.4 Organic Carbon from Fossil Fuels, Biomass Burning and Nitrate Aerosol
404(1)
16.4.4 Global Dimming
404(1)
16.5 Aerosol Effects on Clouds
405(3)
16.5.1 Cloud Albedo Effect
405(1)
16.5.1.1 Other Cloud--Aerosol Effects
406(1)
16.5.2 Evidence
406(1)
16.5.2.1 Fossil Fuel and Biomass Burning
406(1)
16.5.2.2 Ship Tracks
407(1)
16.5.2.3 DMS-Cloud-Climate Hypothesis
407(1)
16.5.2.4 IPCC Estimates
407(1)
16.6 Other Forcings
408(3)
16.6.1 Surface Albedo
408(1)
16.6.1.1 Land-Use Changes
409(1)
16.6.1.2 Black Carbon on Snow
409(1)
16.6.2 Solar Irradiance
409(1)
16.6.3 Volcanic Aerosols
410(1)
16.7 Summary of Forcings
411(3)
16.7.1 Uncertainties
411(1)
16.7.2 Estimates
411(2)
16.7.3 Additivity
413(1)
16.7.4 Fate of the Heat Increase
413(1)
16.8 Feedbacks
414(2)
16.8.1 Water Vapour Feedback
414(1)
16.8.2 Cloud Feedbacks
414(1)
16.8.3 Ice-Albedo Feedback
415(1)
16.8.4 Lapse Rate Feedback
415(1)
16.8.5 Biospheric Feedbacks
415(1)
16.8.6 Methane Hydrate
416(1)
16.9 Sensitivity and Response
416(5)
16.9.1 Climate Sensitivity
416(1)
16.9.2 Sensitivity to Solar Forcing
417(1)
16.9.3 Transient Response
417(1)
Synopsis
418(1)
Exercises
419(2)
17 Climate Modelling
421(28)
17.1 Energy Balance Climate Models
421(4)
17.1.1 Energy Budgets
422(1)
17.1.1.1 Radiation Exchanges
422(1)
17.1.1.2 Heat Transport
422(1)
17.1.2 Radiative Exchanges
423(1)
17.1.2.1 Albedo
423(1)
17.1.2.2 Longwave Exchange
423(1)
17.1.3 Budyko--Sellers Modelling
424(1)
17.1.3.1 Solution
424(1)
17.1.3.2 Applications
424(1)
17.2 Ocean Box Models
425(1)
17.2.1 Single-Layer Ocean
425(1)
17.2.2 Two-Layer Ocean
425(1)
17.3 General Circulation Models
426(3)
17.3.1 Numerical Weather Prediction
427(1)
17.3.2 Parameterisations
427(1)
17.3.3 Predictability
428(1)
17.3.4 Boundary Conditions
428(1)
17.3.5 Spectral Models
429(1)
17.4 Climate Models
429(6)
17.4.1 Coupled Climate Models
430(1)
17.4.1.1 Ocean Modelling
430(1)
17.4.1.2 Ice
431(1)
17.4.1.3 Running the Models
431(1)
17.4.2 Earth System Models
431(1)
17.4.2.1 Land Surface
432(1)
17.4.2.2 Biogeochemical Feedbacks
432(1)
17.4.2.3 Chemistry
433(1)
17.4.3 Climate Modelling Studies
433(1)
17.4.3.1 Natural Climate Variability
433(1)
17.4.3.2 Response to Greenhouse Gas Forcing
434(1)
17.4.3.3 Climate Model Intercomparison Project
434(1)
17.5 Twentieth Century Climate
435(4)
17.5.1 Observations
435(2)
17.5.2 IPCC Conclusions
437(1)
17.5.2.1 Change and Attribution
438(1)
17.6 Climate Projection
439(10)
17.6.1 Emissions and Composition
439(1)
17.6.1.1 Emission Scenario Families
440(1)
17.6.1.2 Concentration Pathways
440(1)
17.6.2 Climate Projections for the Twenty-First Century
440(1)
17.6.2.1 Key-Point Summary
440(1)
17.6.2.2 Atmosphere: Temperature
441(1)
17.6.2.3 Atmosphere: Water Cycle
441(1)
17.6.2.4 Cryosphere
442(1)
17.6.2.5 Ocean
443(1)
17.6.2.6 Chemistry
443(1)
17.6.2.7 Impacts of Change
444(1)
Synopsis
445(1)
Exercises
446(3)
18 Supplementary Topics
449(20)
18.1 Studies of Past Climates
449(6)
18.1.1 Climate through Geological Time
450(1)
18.1.1.1 Glaciation
450(1)
18.1.1.2 Solar Luminosity
450(1)
18.1.2 Quaternary Climate
451(1)
18.1.2.1 Glacial--Interglacial Cycles
451(1)
18.1.2.2 Orbital Perturbations
451(1)
18.1.2.3 Orbital Forcing
451(2)
18.1.2.4 Younger Dryas
453(1)
18.1.2.5 Holocene Climate
453(1)
18.1.3 IPCC Assessments
454(1)
18.1.3.1 Greenhouse Gas Variations and Past Climate Responses
454(1)
18.1.3.2 Sea-Level Changes during Past Warm Periods
454(1)
18.1.3.3 Recent Climate Change versus Holocene Climate Variability
455(1)
18.2 Geoengineering
455(5)
18.2.1 Solar Radiation Management
455(1)
18.2.1.1 Surface Albedo
456(1)
18.2.1.2 Stratospheric Aerosols
456(1)
18.2.1.3 Cloud Brightening
457(1)
18.2.2 Carbon Dioxide Removal
457(1)
18.2.2.1 Land-Based Sequestration
457(1)
18.2.2.2 Ocean-Based Sequestration
458(1)
18.2.3 Policy Considerations
458(1)
18.2.3.1 Moral Questions
458(1)
18.2.3.2 Governance
458(1)
18.2.3.3 Weaponization
459(1)
18.2.4 A Path Ahead?
459(1)
18.2.4.1 Marine Cloud Brightening
460(1)
18.2.4.2 Stratospheric Experiments
460(1)
18.2.4.3 Cirrus Cloud Modification
460(1)
18.3 Nuclear Winter
460(2)
18.4 Planetary Cousins
462(2)
18.4.1 Venus
462(1)
18.4.1.1 Runaway Greenhouse Effect
462(1)
18.4.2 Mars
463(1)
18.4.2.1 Terraforming Mars
463(1)
18.4.3 Habitable Zone
463(1)
18.5 Environmental Trade-Offs
464(5)
18A Appendix/Exercise
465(4)
References 469(16)
Index 485
Michael A. Box earned his undergraduate degree in physics at Monash University in 1969, before moving to the University of Sydney to complete a Ph.D in nuclear physics. He has worked in the field of atmospheric physics for more than 35 years, and is well known for his contributions in radiative transfer, atmospheric aerosols, and remote sensing inversion theory. Michael Box is a Fellow of the Australian Meteorological and Oceanographic Society (AMOS) and a member of the American Geophysical Union (AGU). He has also served two terms as an associate editor of the Journal of Quantitative Spectroscopy and Radiative Transfer .Gail P. Box completed both her B.Sc and Ph.D in physics at Newcastle University. Her research has covered many aspects of aerosols, including air quality and radiative forcing. She established the Australian Aerosol Workshop, now expanded as the Australian and New Zealand Aerosol Assembly, to bring together workers in this field. Gail Box is also a member of AMOS, AGU, and the Clean Air Society of Australia and New Zealand.