Atjaunināt sīkdatņu piekrišanu

Physics of Space Storms: From the Solar Surface to the Earth [Hardback]

  • Formāts: Hardback, 419 pages, height x width: 240x168 mm, weight: 910 g, XVIII, 419 p., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 22-Jan-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642003109
  • ISBN-13: 9783642003103
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 419 pages, height x width: 240x168 mm, weight: 910 g, XVIII, 419 p., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 22-Jan-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642003109
  • ISBN-13: 9783642003103
Citas grāmatas par šo tēmu:
This book details the state-of-the art in the field of space storms. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground.

This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way.The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo.Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
Preface xi
Acknowledgements xv
1 Stormy Tour from the Sun to the Earth
1(58)
1.1 Source of Space Storms: the Sun
1(20)
1.1.1 The Sun as a star
2(3)
1.1.2 Solar spectrum
5(2)
1.1.3 Solar atmosphere
7(1)
1.1.4 Rotation of the Sun
8(3)
1.1.5 Sunspots and solar magnetism
11(5)
1.1.6 Coronal activity
16(5)
1.2 The Carrier to the Earth: the Solar Wind
21(11)
1.2.1 Elements of solar wind expansion
21(4)
1.2.2 The interplanetary magnetic field
25(3)
1.2.3 The observed structure of the solar wind
28(1)
1.2.4 Perturbed solar wind
29(3)
1.3 The Magnetosphere
32(16)
1.3.1 Formation of the Earth's magnetosphere
32(2)
1.3.2 The outer magnetosphere
34(3)
1.3.3 The inner magnetosphere
37(3)
1.3.4 Magnetospheric convection
40(4)
1.3.5 Origins of magnetospheric plasma
44(1)
1.3.6 Convection and electric fields
45(3)
1.4 The Upper Atmosphere and the Ionosphere
48(6)
1.4.1 The thermosphere and the exosphere
49(1)
1.4.2 Structure of the ionosphere
50(1)
1.4.3 Electric currents in the polar ionosphere
51(3)
1.5 Space Storms Seen from the Ground
54(5)
1.5.1 Measuring the strength of space storms
55(2)
1.5.2 Geomagnetically induced currents
57(2)
2 Physical Foundations
59(30)
2.1 What is Plasma?
59(5)
2.1.1 Debye shielding
60(1)
2.1.2 Plasma oscillations
61(1)
2.1.3 Gyro motion
62(1)
2.1.4 Collisions
63(1)
2.2 Basic Electrodynamics
64(9)
2.2.1 Maxwell's equations
64(2)
2.2.2 Lorentz force
66(1)
2.2.3 Potentials
66(4)
2.2.4 Energy conservation
70(1)
2.2.5 Charged particles in electromagnetic fields
71(2)
2.3 Tools of Statistical Physics
73(16)
2.3.1 Plasma in thermal equilibrium
73(2)
2.3.2 Derivation of Vlasov and Boltzmann equations
75(3)
2.3.3 Macroscopic variables
78(2)
2.3.4 Derivation of macroscopic equations
80(2)
2.3.5 Equations of magnetohydrodynamics
82(4)
2.3.6 Double adiabatic theory
86(3)
3 Single Particle Motion
89(24)
3.1 Magnetic Drifts
89(4)
3.2 Adiabatic Invariants
93(5)
3.2.1 The first adiabatic invariant
93(2)
3.2.2 Magnetic mirror and magnetic bottle
95(1)
3.2.3 The second adiabatic invariant
96(1)
3.2.4 Betatron and Fermi acceleration
96(1)
3.2.5 The third adiabatic invariant
97(1)
3.3 Motion in the Dipole Field
98(5)
3.4 Motion Near a Current Sheet
103(5)
3.4.1 The Harris model
104(2)
3.4.2 Neutral sheet with a constant electric field
106(1)
3.4.3 Current sheet with a small perpendicular magnetic field component
107(1)
3.5 Motion in a Time-dependent Electric Field
108(5)
3.5.1 Slow time variations
108(1)
3.5.2 Time variations in resonance with gyro motion
108(1)
3.5.3 High-frequency fields
109(4)
4 Waves in Cold Plasma Approximation
113(28)
4.1 Basic Concepts
113(8)
4.1.1 Waves in linear media
113(4)
4.1.2 Wave polarization
117(1)
4.1.3 Reflection and refraction
118(3)
4.2 Radio Wave Propagation in the Ionosphere
121(9)
4.2.1 Isotropic, lossless ionosphere
121(3)
4.2.2 Weakly inhomogeneous ionosphere
124(4)
4.2.3 Inclusion of collisions
128(1)
4.2.4 Inclusion of the magnetic field
129(1)
4.3 General Treatment of Cold Plasma Waves
130(11)
4.3.1 Dispersion equation for cold plasma waves
130(3)
4.3.2 Parallel propagation (θ = 0)
133(3)
4.3.3 Perpendicular propagation (θ φ/2)
136(1)
4.3.4 Propagation at arbitrary angles
137(4)
5 Vlasov Theory
141(22)
5.1 Properties of the Vlasov Equation
141(2)
5.2 Landau's Solution
143(5)
5.3 Normal Modes in a Maxwellian Plasma
148(5)
5.3.1 The plasma dispersion function
148(1)
5.3.2 The Langmuir wave
149(1)
5.3.3 The ion-acoustic wave
150(1)
5.3.4 Macroscopic derivation of Langmuir and ion-acoustic modes
151(2)
5.4 Physics of Landau Damping
153(2)
5.5 Vlasov Theory in a General Equilibrium
155(2)
5.6 Uniformly Magnetized Plasma
157(6)
5.6.1 Perpendicular propagation (θ = φ/2)
159(2)
5.6.2 Parallel propagation (θ = 0)
161(1)
5.6.3 Propagation at arbitrary angles
161(2)
6 Magnetohydrodynamics
163(28)
6.1 From Hydrodynamics to Conservative MHD Equations
163(3)
6.2 Convection and Diffusion
166(2)
6.3 Frozen-in Field Lines
168(3)
6.4 Magnetohydrostatic Equilibrium
171(2)
6.5 Field-aligned Currents
173(10)
6.5.1 Force-free fields
173(3)
6.5.2 Grad-Shafranov equation
176(1)
6.5.3 General properties of force-free fields
177(1)
6.5.4 FACs and the magnetosphere-ionosphere coupling
178(2)
6.5.5 Magnetic helicity
180(3)
6.6 Alfven Waves
183(3)
6.6.1 Dispersion equation of MHD waves
183(1)
6.6.2 MHD wave modes
184(2)
6.7 Beyond MHD
186(5)
6.7.1 Quasi-neutral hybrid approach
187(2)
6.7.2 Kinetic Alfven waves
189(2)
7 Space Plasma Instabilities
191(28)
7.1 Beam-plasma Modes
192(4)
7.1.1 Two-stream instability
193(2)
7.1.2 Buneman instability
195(1)
7.2 Macroinstabilities
196(11)
7.2.1 Rayleigh-Taylor instability
196(3)
7.2.2 Farley-Buneman instability
199(1)
7.2.3 Ballooning instability
200(2)
7.2.4 Kelvin-Helmholtz instability
202(2)
7.2.5 Firehose and mirror instabilities
204(2)
7.2.6 Flux tube instabilities
206(1)
7.3 Microinstabilities
207(12)
7.3.1 Monotonically decreasing distribution function
207(1)
7.3.2 Multiple-peaked distributions
208(2)
7.3.3 Ion-acoustic instability
210(2)
7.3.4 Electrostatic ion cyclotron instability
212(1)
7.3.5 Current-driven instabilities perpendicular to B
213(2)
7.3.6 Electromagnetic cyclotron instabilities
215(2)
7.3.7 Ion beam instabilities
217(2)
8 Magnetic Reconnection
219(26)
8.1 Basics of Reconnection
219(8)
8.1.1 Classical MHD description of reconnection
220(1)
8.1.2 The Sweet-Parker model
221(2)
8.1.3 The Petschek model
223(2)
8.1.4 Asymmetric reconnection
225(2)
8.2 Collisionless Reconnection
227(9)
8.2.1 The tearing mode
228(1)
8.2.2 The collisionless tearing mode
229(2)
8.2.3 Tearing mode or something else?
231(1)
8.2.4 The Hall effect
232(4)
8.3 Reconnection and Dynamo
236(9)
8.3.1 Current generation at the magnetospheric boundary
236(2)
8.3.2 Elements of solar dynamo theory
238(3)
8.3.3 The kinematic αω dynamo
241(4)
9 Plasma Radiation and Scattering
245(22)
9.1 Simple Antennas
245(3)
9.2 Radiation of a Moving Charge
248(3)
9.3 Bremsstrahlung
251(4)
9.4 Cyclotron and Synchrotron Radiation
255(3)
9.5 Scattering from Plasma Fluctuations
258(3)
9.6 Thomson Scattering
261(6)
10 Transport and Diffusion in Space Plasmas
267(12)
10.1 Particle Flux and Phase Space Density
267(2)
10.2 Coordinates for Particle Flux Description
269(2)
10.3 Elements of Fokker-Planck Theory
271(2)
10.4 Quasi-Linear Diffusion Through Wave-Particle Interaction
273(3)
10.5 Kinetic Equation with Fokker-Planck Terms
276(3)
11 Shocks and Shock Acceleration
279(20)
11.1 Basic Shock Formation
280(3)
11.1.1 Steepening of continuous structures
280(2)
11.1.2 Hydrodynamic shocks
282(1)
11.2 Shocks in MHD
283(10)
11.2.1 Perpendicular shocks
283(2)
11.2.2 Oblique shocks
285(2)
11.2.3 Rotational and tangential discontinuities
287(1)
11.2.4 Thickness of the shock front
288(2)
11.2.5 Collisionless shock wave structure
290(3)
11.3 Particle Acceleration in Shock Waves
293(6)
11.3.1 Shock drift acceleration
294(1)
11.3.2 Diffusive shock acceleration
295(2)
11.3.3 Shock surfing acceleration
297(2)
12 Storms on the Sun
299(24)
12.1 Prominences and Coronal Loops
300(2)
12.2 Radio Storms on the Sun
302(5)
12.2.1 Classification of radio emissions
303(1)
12.2.2 Physical mechanisms for solar radio emissions
304(3)
12.3 Solar Flares
307(7)
12.3.1 Observational characteristics of solar flares
307(4)
12.3.2 Physics of solar flares
311(3)
12.4 Coronal Mass Ejections
314(6)
12.4.1 CMEs near the Sun
315(2)
12.4.2 Propagation time to 1 AU
317(1)
12.4.3 Magnetic structure of ICMEs
318(2)
12.5 CMEs, Flares and Particle Acceleration
320(3)
13 Magnetospheric Storms and Substorms
323(48)
13.1 What are Magnetic Storms and Substorms?
323(10)
13.1.1 Storm basics
324(2)
13.1.2 The concept of substorm
326(1)
13.1.3 Observational signatures of substorms
326(7)
13.2 Physics of Substorm Onset
333(12)
13.2.1 The outside-in view
334(5)
13.2.2 The inside-out view
339(3)
13.2.3 External triggering of substorm expansion
342(1)
13.2.4 Timing of substorm onset
342(3)
13.3 Storm-Time Activity
345(5)
13.3.1 Steady magnetospheric convection
345(3)
13.3.2 Substorm-like activations and sawtooth Events
348(2)
13.4 ICME-Storm Relationships
350(4)
13.4.1 Geoeffectivity of an ICME
350(2)
13.4.2 Different response to different drivers
352(2)
13.5 Storms Driven by Fast Solar Wind
354(3)
13.5.1 27-day recurrence of magnetospheric activity
354(1)
13.5.2 Differences from ICME-driven storms
355(2)
13.6 Energy Budgets of Storms and Substorms
357(8)
13.6.1 Energy supply
357(1)
13.6.2 Ring current energy
358(2)
13.6.3 Ionospheric dissipation
360(2)
13.6.4 Energy consumption farther in the magnetosphere
362(1)
13.6.5 Energy transfer across the magnetopause
362(3)
13.7 Superstorms and Polar Cap Potential Saturation
365(6)
13.7.1 Quantification of the saturation
366(1)
13.7.2 Hill-Siscoe formulation
366(2)
13.7.3 The Alfven wing approach
368(1)
13.7.4 Magnetosheath force balance
369(2)
14 Storms in the Inner Magnetosphere
371(22)
14.1 Dynamics of the Ring Current
372(10)
14.1.1 Asymmetric structure of the ring current
372(1)
14.1.2 Sources of the enhanced ring current
373(3)
14.1.3 Role of substorms in storm evolution
376(1)
14.1.4 Loss of ring current through charge exchange collisions
376(3)
14.1.5 Pitch angle scattering by wave-particle interactions
379(2)
14.1.6 ENA imaging of the ring current
381(1)
14.2 Storm-Time Radiation Belts
382(11)
14.2.1 Sources of radiation belt ions
382(1)
14.2.2 Losses of radiation belt ions
383(1)
14.2.3 Transport and acceleration of electrons
384(6)
14.2.4 Electron losses
390(3)
15 Space Storms in the Atmosphere and on the Ground
393(6)
15.1 Coupling to the Neutral Atmosphere
393(2)
15.1.1 Heating of the thermosphere
394(1)
15.1.2 Solar proton events and the middle atmosphere
394(1)
15.2 Coupling to the Surface of the Earth
395(4)
References 399(12)
Index 411