Atjaunināt sīkdatņu piekrišanu

E-grāmata: Phytopharmaceuticals: Potential Therapeutic Applications

Edited by , Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119682073
  • Formāts - EPUB+DRM
  • Cena: 223,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119682073

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Medicinal plants contain a variety of bioactive compounds, (also referred to as phytochemicals). in the leaves, stems, flowers and fruits.  This book covers these bioactive compounds, their available sources, how the bioactive molecules are isolated from the plants, the biochemistry, structural composition and potential biological activities. Also discussed are the pharmacological aspects of medicinal plants, phytochemistry and biological activities of different natural products, ethnobotany and medicinal properties, as well as a novel dietary approach for various disease management and therapeutic potential. The importance of phytopharmaceutical of plants and potential applications in the food and pharma industries is highlighted.

Preface xvii
1 A Great Challenge on the Reproducibility of Therapeutic Results of Phytopharmaceuticals 1(18)
Idha Kusumawati
1.1 Introduction
1(1)
1.2 Common Challenges in Phytopharmaceuticals
2(8)
1.2.1 Authentication of Raw Material
3(1)
1.2.2 Variability of Chemical Content in Raw Material
4(6)
1.2.2.1 Intrinsic Factor
5(1)
1.2.2.2 Extrinsic Factor
5(1)
1.2.2.3 Harvesting
6(1)
1.2.2.4 Post-Harvesting Process
7(1)
1.2.2.5 Storage
8(1)
1.2.2.6 Complex Mixture of the Pharmacologically Active Constituent
8(2)
1.3 Strategy to Guarantee the Quality of Phytopharmaceutical
10(5)
1.3.1 Marker Compound Concept
11(2)
1.3.2 Phytoequivalence Concept
13(2)
1.4 Conclusion
15(1)
Acknowledgment
15(1)
References
15(4)
2 Ibero-American Network as a Collaborative Strategy to Provide Tools for the Development of Phytopharmaceuticals and Nutraceuticals 19(40)
Pilar Buera
Cecilia Abirached
Liliana Alamilla-Beltran
Veronica Maria Busch
Cristina Isabel dos Santos
Abel Farroni
Leonardo Cristian Favre
Aldo Fermindez-Varela
Fabiano Freire-Costa
Julieta Gabilondo
Micaela Galante
Marfa Eugenia Hidalgo
Romina Ingrassia
Milagros Lopez Hiriart
Alejandra Medrano
Oscar Micheloni
Miguel Navarro Alarcon
Luis Panizzolo
Silvia del Carmen Pereyra-Castro
Viridiana Perez-Perez
Carla Patricia Plazola-Jacinto
Patricia Risso
Paz Robert-Canales
Analia Rodriguez
Silvio David Rodriguez
Erick Rojas-Balcazar
Jose Angel Rufian Henares
Franco Emanuel Vasile
2.1 Introduction
20(1)
2.2 Some Unexplored Botanicals From Ibero-America as Potential Sources of Bioactive Compounds
21(10)
2.2.1 South America Regions: Tropical Savanna and Atlantic Forest
21(1)
2.2.2 Central South America Semiarid Regions
22(1)
2.2.3 Northern South America, Central America and Caribbean
23(1)
2.2.4 Exploitation of Undervalued Resources From Fabaceae Family to Obtain Hydrocolloids
24(3)
2.2.4.1 Gums From Native Fabaceae Family Seeds
24(2)
2.2.4.2 Gums From Fabaceae Family Exudates
26(1)
2.2.5 Healthy Fatty Acid Sources From Ibero America
27(1)
2.2.6 Bioactives From Agroindustrial Wastes
27(4)
2.2.6.1 Commercial Edible Flowers
27(2)
2.2.6.2 Coffee Grounds as Source of Prebiotics
29(1)
2.2.6.3 Healthy Compounds From Olive Oil Wastes
30(1)
2.3 Technologies for Obtaining Stable Natural Bioactive Extracts
31(11)
2.3.1 Extraction Techniques
31(1)
2.3.2 In Vitro Tests for Assessing Antioxidant and Antiglycant Activities
32(5)
2.3.2.1 Antioxidant Activity
33(3)
2.3.2.2 Antiglycant Agents Detection
36(1)
2.3.3 Biocompounds Conservation and Controlled Delivery Systems
37(31)
2.3.3.1 Spray Drying
38(1)
2.3.3.2 Coacervation
39(2)
2.3.3.3 Management of Protein-Hydrocolloid Interactions for Designing Bioactive Delivery Systems
41(1)
2.4 Multivariate Analysis for Phytopharmaceuticals Development
42(3)
2.5 Conclusions
45(1)
Acknowledgements
46(1)
Abbreviations
46(1)
References
47(12)
3 Use of Hydrodistillation as a Green Technology to Obtain Essential Oils From Several Medicinal Plants Belonging to Lamiaceae (Mint) Family 59(18)
Karamatollah Rezaei
Nahal Bashiri Hashemi
Samar Sahraee
3.1 Introduction
59(2)
3.2 Essential Oils and Applied Extraction Techniques
61(1)
3.3 Use of Hydrodistillation to Bridge the Nature With Novel Green Applications
62(5)
3.4 Specific Gravities of Essential Oils as Related to Their Chemical Compositions
67(1)
3.5 Use of Microwave-Assisted Hydrodistillation in the Extraction of Essential Oils From Ziziphora (A Case Study)
68(1)
3.5.1 Extraction Yield
68(1)
3.5.2 Microstructure of Ziziphora Leaves
68(1)
3.5.3 Physical Properties of Essential Oil
68(1)
3.5.4 Differences in the Chemical Compositions
68(1)
3.6 Conclusion and Future Perspectives
69(3)
Acknowledgements
72(1)
References
72(5)
4 The Hidden Danger in Phytopharmaceuticals: Adulteration 77(22)
Miray Ege
4.1 Introduction
77(1)
4.2 What is Adulteration in Plants and Phytopharmaceuticals?
78(1)
4.3 Standardization and Quality in Medicinal Plants and Phytopharmaceuticals
79(8)
4.3.1 Standardization Problems in Identified Plants
81(2)
4.3.1.1 Inter-Species or Species Variation
81(1)
4.3.1.2 Environmental Factors
82(1)
4.3.1.3 Harvesting Time
82(1)
4.3.1.4 Plant Part Used
82(1)
4.3.1.5 Post-Harvest Factors
83(1)
4.3.2 Quality and Standardization Problems
83(1)
4.3.3 Standardization Parameters and Content Analysis on Medicinal Plants and Phytopharmaceuticals
84(3)
4.3.3.1 Phytochemical Analyses for Phytopharmaceuticals and Medicinal Plants
85(1)
4.3.3.2 Analysis of Extracts and Isolated Compounds
85(1)
4.3.3.3 Standardization Parameters (Monograph Parameters)
86(1)
4.4 Adulteration in Phytopharmaceuticals With Synthetic Drugs
87(3)
4.4.1 Adulteration in Phytopharmaceuticals Used for Slimming
88(1)
4.4.2 Adulteration in Phytopharmaceuticals With Aphrodisiac Effect
89(1)
4.4.3 Adulteration in Phytopharmaceuticals Used in Rheumatic Diseases and as Antiinflammatory Drugs
90(1)
4.4.4 Adulteration in Phytopharmaceuticals Used for Regulate Blood Sugar
90(1)
4.4.5 Adulteration in Phytopharmaceuticals Used for Blood Pressure Regulating
90(1)
4.5 How to Analyze Adulteration in Phytopharmaceuticals?
90(4)
4.5.1 TLC and HPTLC
92(1)
4.5.2 HPLC and GC
92(1)
4.5.3 H NMR
93(1)
4.6 Future Perspective for Phytopharmaceuticals
94(1)
4.7 Conclusion
94(1)
References
95(4)
5 Medicinal Plants from the Balkan Peninsula-From Traditional To Modern Pharmacy/Medicine 99(24)
Aleksandra Cvetanovic
Alena Stupar
Mirjana Petronijevic
Zoran Zekovic
5.1 Introduction
99(2)
5.2 Calendula officinalis L.
101(7)
5.2.1 Chemical Composition of C. officinalis
105(1)
5.2.2 Traditional Use vs. Modern Application of C. officinalis
105(3)
5.3 Taraxacum officinale
108(4)
5.3.1 Chemical Composition of T officinale
108(2)
5.3.2 Traditional Use vs. Modern Application of T officinale
110(2)
5.4 Hypericum perforatum L.
112(4)
5.4.1 Chemical Composition of Hypericum perforatum
113(1)
5.4.2 Traditional Use vs. Modern Application of H. perforatum
114(2)
5.5 Conclusion
116(1)
Acknowledgement
116(1)
List of Abbreviations
116(1)
References
117(6)
6 Plant-Based Peptides With Biological Properties 123(12)
Jessika Goncalves dos Santos Aguilar
6.1 Introduction
123(1)
6.2 Production of Plant-Based Peptides
124(2)
6.3 Bioactive Plant-Based Peptides
126(3)
6.3.1 Antimicrobial
126(1)
6.3.2 Antioxidant
127(1)
6.3.3 Antihypertensive
128(1)
6.3.4 Antithrombotic
128(1)
6.3.5 Other Activities
129(1)
6.4 Conclusion
129(1)
List of Abbreviations
130(1)
References
130(5)
7 Potential of Flavonoids as Anticancer Drugs 135(26)
Pradeep Kumar
Jyoti Dixit
Rajesh Saini
Pooja Verma
Awadhesh Kumar Mishra
Kavindra NathTiwari
7.1 Introduction
135(9)
7.2 Causes of Cancer
144(1)
7.3 Synthetic and Natural Chemotherapeutic Drugs
145(3)
7.4 Biosynthesis of Flavonoids
148(1)
7.5 Flavonoid Chemistry
149(6)
7.5.1 Flavonols
150(1)
7.5.1.1 Quercetin
150(1)
7.5.1.2 Kaemferol
150(1)
7.5.2 Flavones
151(1)
7.5.2.1 Apigenin
152(1)
7.5.3 Flavanones
152(1)
7.5.4 Isoflavonoids
153(1)
7.5.5 Anthocyanins
154(1)
7.6 Mode of Action of Plant-Based Anticancer Compounds
155(1)
7.7 Conclusions
155(1)
References
156(5)
8 Phytomedicine Against Infectious Diseases 161(12)
Biswajyoti Sarkar
Sondipon Chakraborty
Chiranjib Pal
8.1 Introduction
161(3)
8.1.1 What are the Phytomedicines?
162(1)
8.1.2 A Brief Synopsis of the History of Phytomedicine Uses, in Relation With Geographical Regions and Sources
162(1)
8.1.3 The Relevance of Application of Phytomedicine in Today's World
163(1)
8.2 Names, Sources, and Types of Phytomedicines in Use in the Modern World
164(2)
8.3 Chemical Moieties Responsible for the Inhibitory Activity of Different Phytomedicines on Different Organisms
166(1)
8.4 Phytomedicines in Use Against Bacterial, Viral and Protozoan Diseases
167(2)
8.4.1 In Clinical Use
167(1)
8.4.2 In Experimental Therapeutics
168(1)
8.5 Conclusion
169(1)
References
170(3)
9 Herbal Traditional Remedies for Male Infertility 173(18)
Shalaka Sudhir Ramgir
Abilash Valsala Gopalakrishnan
Selvaraj Mohana Roopan
9.1 Introduction
173(1)
9.2 Application of Indian Traditional Medicine (Ayurveda) for Male Infertility
174(4)
9.3 The Significant Role of Traditional Chinese Medicine in Male Infertility Management
178(3)
9.4 Iranian/Persian Traditional Medicine (ITM) Restores Male Fertility
181(1)
9.5 Traditional Korean Medicine and Male Infertility
182(1)
9.6 Traditional African Medicine in the Treatment of Male Infertility
183(1)
9.7 Conclusion
184(1)
References
184(7)
10 The Therapeutic Applications of Phytopharmaceuticals in Dentistry 191(32)
Bilal Ege
Miray Ege
10.1 Introduction
191(2)
10.2 Historical Development of Phytopharmaceuticals in Dentistry
193(1)
10.3 Phytochemical Contents of Plants
194(1)
10.3.1 Alkaloids
194(1)
10.3.2 Phenolic Compounds
195(1)
10.3.3 Polyphenols
195(1)
10.3.4 Terpenoids
195(1)
10.4 Dental Materials of Plant Origin
195(1)
10.5 Phytotherapeutics in Dentistry
196(19)
10.5.1 Usage in Tooth Decays
196(6)
10.5.1.1 Effective Factors in Caries Formation
197(1)
10.5.1.2 Anticariogenic Plants Effective in Preventing Dental Caries
198(4)
10.5.2 Usage in Oral Mucosal Lesions
202(2)
10.5.3 Usage in Endodontic Treatment
204(3)
10.5.3.1 Phytopharmaceutical Irrigants
205(1)
10.5.3.2 Phytopharmaceutical Intracanal Drugs
206(1)
10.5.4 Usage in Dental Traumatology
207(1)
10.5.5 Usage in Oral Surgery
208(1)
10.5.6 Usage in Periodontal Diseases
209(4)
10.5.7 Usage in Treatment of Halitosis
213(2)
10.6 Conclusion
215(1)
References
215(8)
11 Prevention of Vascular Endothelial Dysfunction by Polyphenols: Role in Cardiovascular Disease Prevention 223(24)
Kazuo Yamagata
11.1 Introduction
223(2)
11.2 Endothelial Dysfunction and Cardiovascular Disease
225(3)
11.2.1 Production and Elimination of Reactive Oxygen Species in Endothelial Cells
225(2)
11.2.2 Regulation of Nitric Oxide Bioavailability by Oxidative Stress
227(1)
11.3 Inflammation and Endothelial Cell Dysfunction Associated With Arteriosclerosis in Endothelial Cells
228(2)
11.4 Preventive Effects of Resveratrol on Endothelial Dysfunction
230(3)
11.5 Preventive Effects of EGCG on Endothelial Dysfunction
233(2)
11.6 Preventive Effects of Quercetin on Endothelial Dysfunction
235(2)
11.7 Preventive Effects of Chlorogenic Acid on Endothelial Dysfunction
237(1)
11.8 Conclusion
238(1)
References
238(9)
12 Quercetin-Rebuttal Behavior in Male Reproductive Potential 247(12)
Kaviyarasi Renu
Abilash Valsala Gopalakrishnan
Selvaraj Mohana Roopan
12.1 Introduction
247(1)
12.2 Quercetin as Antioxidants
248(1)
12.3 Quercetin, In Vitro Antioxidant Activity
248(2)
12.3.1 Quercetin, Direct Scavenging of ROS and Activates Antioxidant Enzymes
248(1)
12.3.2 Metal Chelating Activity of Quercetin
249(1)
12.3.3 Inhibition of Oxides by Quercetin
249(1)
12.3.4 Reduction of α-Tocopheryl Radicals by Quercetin
250(1)
12.3.5 Elevated Pro-Oxidant Properties of Low Molecular Antioxidants
250(1)
12.4 Quercetin Metabolism With In Vitro and In Vivo Antioxidant Activity of its Metabolites
250(1)
12.5 Quercetin as Pro-Oxidant
250(1)
12.5.1 Quercetin Pro-Oxidant Function
250(1)
12.6 Quercetin, Phenoxyl Radicals Oxidation
251(1)
12.7 Impairment of Respiration of Mitochondria by Quercetin
251(1)
12.8 Quercetin, Low Molecular Weight Antioxidant Oxidation
251(1)
12.9 Quercetin Damage Directly DNA
252(1)
12.10 Spermatogenesis and Oxidative Stress
252(1)
12.11 Quercetin and Male Reproduction
252(1)
12.12 Amelioration of Male Reproductive Dysfunction by Quercetin
253(1)
12.13 Contradictory Reports of Quercetin With Respect to Male Reproductive Potential
254(1)
12.14 Conclusion
254(1)
References
254(5)
13 Traditional Uses and Bioactivities of Common Rubus Species With Reference to Cancer: A Mini-Review 259(12)
Blassan P. George
Heidi Abrahamse
13.1 Introduction
259(1)
13.2 Traditional Uses of Common Rubus Species
260(1)
13.2.1 Rubus fruticosus
260(1)
13.2.2 Rubus ellipticus
260(1)
13.2.3 Rubus idaeus and Related Rubus Species
261(1)
13.3 Biological Activity Studies of Rubus Extracts
261(1)
13.4 Bioactive Compounds From Rubus Species
262(1)
13.5 Rubus as an Antitumor Agent
262(3)
13.6 Conclusion
265(1)
Acknowledgements
265(1)
References
265(6)
14 Therapeutic Compounds From Brown Seaweeds: Antitumor Properties on Various Cancers and Their Mechanisms of Action 271(16)
Dilek Unal
Inci Tuney Kizilkaya
14.1 Introduction
271(2)
14.2 Type of Bioactive Compounds From Brown Algae
273(3)
14.2.1 Terpenoids (Terpens)
273(1)
14.2.2 Polysaccharides
274(1)
14.2.2.1 Alginic Acid
274(1)
14.2.2.2 Fucoidans
274(1)
14.2.2.3 Laminarin
275(1)
14.2.3 Polyphenols
275(1)
14.2.4 Pigments
276(1)
14.3 Type of Cancer and Molecular Action Mechanisms
276(4)
14.3.1 Breast Cancer
278(1)
14.3.2 Colon Cancer
279(1)
14.3.3 Prostate Cancer
280(1)
14.4 Conclusion
280(1)
References
280(7)
15 Medicinal Plants and Polycystic Ovary Syndrome 287(14)
Yogamaya D. Prabhu
Abilash Valsala Gopalakrishnan
Selvaraj Mohana Roopan
15.1 Introduction
287(1)
15.2 Clinical Manifestations of PCOS
288(1)
15.3 Importance of Phenotypes in PCOS
289(1)
15.4 Conventional Therapies for PCOS Treatment
290(1)
15.5 Herbal Medicine and PCOS
290(5)
15.6 Conclusion
295(1)
List of Abbreviations & Symbols
296(1)
References
296(5)
16 The Potential Role of Phytochemical in Establishing Prophylactic Measurements Against Neurological Diseases 301(14)
Srivastava P.
Tiwari A.
16.1 Introduction
301(1)
16.2 Focused Neurological Disorder for Herbal Promises
302(9)
16.2.1 Cases of Attention
303(1)
16.2.2 Target Identification
303(1)
16.2.3 Physicochemical Characterization and Secondary Structure Prediction
303(1)
16.2.4 Molecular Modeling Studies
304(1)
16.2.5 Virtual Screening for Potential Phytochemicals
305(2)
16.2.6 Molecular Interaction Studies
307(4)
16.3 Conclusion
311(1)
References
311(4)
17 Immunomodulatory Activity of Cannabinoids: From Abuse to Therapy 315(16)
Farid A. Badria
Abdullah A. Elgazar
17.1 Introduction
315(3)
17.2 Immunity System, Related Diseases and Current Therapeutic Options
318(2)
17.3 Historical and Traditional Uses of Cannabis Herb
320(1)
17.4 Chemistry of Cannabinoids
321(2)
17.5 Pharmacology of Phytocannabinoids
323(3)
17.5.1 Pharmacological Effect of THC
323(1)
17.5.2 Pharmacological Effect of CBD
324(2)
17.6 Conclusion
326(1)
References
326(5)
18 Botany, Geographical Distribution, Phytochemistry and Phytopharmaceutical Potential of Rheum emodi Wall. ex Meisn.: An Overview 331(16)
Mohd. Shahnawaz
Refaz Ahmad Dar
Syed Mudassir Jeelani
Tahoora Batool Zargar
Malik Mohd. Azhar
Sajad Ahmed
Sabeena Ali
Rekha Chouhan
Gulfam Sheikh
Puja Gupta
Abhishek Kumar Nautiyal
Manisha K. Sangale
Avinash B. Ade
18.1 Introduction
332(1)
18.2 Botany and Taxonomic Status of R. emodi
332(1)
18.3 Origin and Geographical Distribution of R. emodi
333(1)
18.4 Phyto Constituents of R. emodi
334(7)
18.5 Traditional Uses of R. emodi
341(1)
18.6 Pharmaceutically Active Biomolecules of R. emodi
341(1)
18.7 Conclusion
342(1)
18.8 Future Prospective
342(1)
Acknowledgements
342(1)
References
343(4)
19 Taxonomic Status, Phytochemical Constituents and Pharmaceutical Active Components of Genus Alseodaphne: A Literature Update 347(16)
Puja Gupta
Mohd. Shahnawaz
Sajad Ahmad
Rekha Chouhan
Sundeep Jaglan
Yash pal Sharma
Madangchanok Imchen
Ranjith Kumavath
19.1 Introduction
347(1)
19.2 Botany and Taxonomic Status of Some Important Members of Alseodaphne
348(2)
19.2.1 Alseodaphne archboldiana Kosterm
348(1)
19.2.2 Alseodaphne andersonii Kosterm
348(1)
19.2.3 Alseodaphne corneri Kosterm
349(1)
19.2.4 Alseodaphne hainanensis Merr
349(1)
19.2.5 Alseodaphne pendulifolia Gamble
349(1)
19.2.6 Alseodpahne peduncularis (Wall. ex Nees)
349(1)
19.2.7 Alseodaphne perakensis (Gamble) Kosterm
349(1)
19.2.8 Alseodaphne semecarpifolia Nees
350(1)
19.3 Origin and Geographical Distribution of Some Important Members of Genus Alseodaphne
350(1)
19.3.1 A. archboldiana
350(1)
19.3.2 A. andersonii
350(1)
19.3.3 A. corneri
350(1)
19.3.4 A. hainensis
350(1)
19.3.5 A. pendulifolia
350(1)
19.3.6 A. peduncularis
350(1)
19.3.7 A. perakensis
351(1)
19.3.8 A. semecarpifolia
351(1)
19.4 Phytochemical Studies of a Few Important Members of Alseodaphne
351(2)
19.4.1 A. archboldiana
351(1)
19.4.2 A. andersonii
351(1)
19.4.3 A. corneri
351(1)
19.4.4 A. hainensis
352(1)
19.4.5 A. pendulifolia
352(1)
19.4.6 A. peduncularis
352(1)
19.4.7 A. perakensis
352(1)
19.4.8 A. semicarpifolia
352(1)
19.5 Traditional and Pharmaceutical Importance of Some Important Members of Alseodaphne
353(3)
19.5.1 A. archboldiana
353(1)
19.5.2 A. andersonii
353(1)
19.5.2.1 Effect on Inflammation and Central Nervous System
353(1)
19.5.2.2 Antimicrobial Activity
353(1)
19.5.2.3 Immunomodulatory Activity of A. andersonii
354(1)
19.5.2.4 Major Fatty Acids and Oil Content of A. andersonii
354(1)
19.5.3 A. corneri
354(1)
19.5.4 A. hainensis
354(1)
19.5.5 A. pendulifolia
355(1)
19.5.6 A. peduncularis
355(1)
19.5.7 A. perakensis
355(1)
19.5.8 A. semicarpifolia
356(1)
19.6 Future Prospective
356(1)
19.7 Conclusions
356(1)
Acknowledgments
356(1)
References
357(6)
20 Bioactive Compounds From Schinus terebinthifolius Raddi and Their Potential Health Benefits 363(40)
Nayara Bispo Macedo
Daylin Diaz Gutierrez
Andreza Santana Santos
Raquel Oliveira Pereira
Gopalsamy Rajiv Gandhi
Maria das Grafas de Oliveira e Silva
Alexis Vidal
Lucindo Jose Quintans Junior
Jullyana de Souza Siqueira Quintans
Ana Mara de Oliveira e Silva
20.1 Introduction
363(1)
20.2 Search Strategies
364(1)
20.3 Bioactive Compounds
365(8)
20.3.1 Phenolic Compounds
372(1)
20.3.2 Terpenes
373(1)
20.4 Biological Activities
373(22)
20.4.1 Antimicrobial Activity
373(10)
20.4.2 Healing Activity
383(2)
20.4.3 Anti-Inflammatory Activity
385(4)
20.4.4 Antioxidant Activity
389(6)
20.5 Toxicity
395(1)
20.6 Conclusion and Future Considerations
395(1)
Acknowledgements
396(1)
References
396(7)
21 Composition and Biological Properties of Rambutan (Nephelium lappaceum) 403(34)
Andreza de Santana Santos
Anne Karoline de Souza Oliveira
Raquel Oliveira Pereira
Erivan Vieira Barbosa Junior
Adalgisa de Lima Sayao
Ana Mara de Oliveira e Silva
21.1 Introduction
403(1)
21.2 Chemical Characterization
404(8)
21.2.1 Centesimal Composition
404(7)
21.2.1.1 Peel
404(1)
21.2.1.2 Pericarp or Pulp
404(7)
21.2.1.3 Seed
411(1)
21.2.2 Bioactive Compounds
411(1)
21.2.2.1 Peel
411(1)
21.2.2.2 Pericarp or Pulp
411(1)
21.2.2.3 Seed
412(1)
21.3 Biological Properties
412(18)
21.3.1 Antioxidant Activity
412(6)
21.3.2 Antimicrobial Activity
418(3)
21.3.3 Antidiabetic Activity
421(1)
21.3.4 Antiobesogenic Activity
421(4)
21.3.5 Other Health Benefits
425(5)
21.4 Toxicity Aspects
430(1)
21.5 Conclusion
430(3)
References
433(4)
22 Phytochemicals and Health: An Update 437(18)
Semih Otles
Gozde Turkoz Bakirci
22.1 Introduction
437(5)
22.1.1 Types of Phytochemicals
438(1)
22.1.2 Reported Phytochemicals
438(4)
22.1.2.1 Steroids
439(1)
22.1.2.2 Flavonoid C-Glycoside
439(1)
22.1.2.3 Flavones
439(1)
22.1.2.4 Essential Oil Component
439(1)
22.1.2.5 Tannins
439(3)
22.1.2.6 Miscellaneous
442(1)
22.2 Health Effect of Phytochemicals
442(9)
22.2.1 Wheat
448(1)
22.2.2 Barley
449(1)
22.2.3 Fruit and Vegetables
449(2)
22.2.4 Legumes
451(1)
22.2.5 Tea
451(1)
22.2.6 Spices and Herbs
451(1)
22.3 Advanced Analysis of Phytochemicals
451(1)
22.4 Conclusion
452(1)
References
452(3)
Index 455
Durgesh Nandini Chauhan completed her M.Pharma in pharmaceutics from Uttar Pradesh at the Dr. A.P.J. Abdul Kalam Technical University, Lucknow in 2006. She is currently working as assistant professor in Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India. She has written more than 10 articles in national and international journals, 15 book chapters, and edited 4 books including Natural Oral Care in Dental Therapy (Wiley-Scrivener 2020).

Kamal Shah has more than 14 years of research and teaching experience and currently is an associate professor at the Institute of Pharmaceutical Research, GLA University, Mathura, India. He has completed B.Pharma from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal (M.P.) in 2003. He was gold medalist in B.Pharm., M.Pharm. from the Department of Pharmaceutical Sciences, Sagar University, Sagar, India and PhD from APJ Kalam University Lucknow, India. He has written more than 30 articles published in national and international journals and 6 book chapters and co-edited Natural Oral Care in Dental Therapy (Wiley-Scrivener 2020).