Atjaunināt sīkdatņu piekrišanu

E-grāmata: Piles and Pile Foundations

(Second University of Napoli, Italy), (University of Naples Federico II, Italy), (University of Naples Federico II, Italy)
  • Formāts: 296 pages
  • Izdošanas datums: 06-Nov-2014
  • Izdevniecība: CRC Press
  • ISBN-13: 9781134008858
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 68,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 296 pages
  • Izdošanas datums: 06-Nov-2014
  • Izdevniecība: CRC Press
  • ISBN-13: 9781134008858
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Piled foundations are generally designed using empirical methods, in particular the traditional capacity based approach on which the majority of codes of practice are based. However in recent years the analysis of pile groups and piled rafts has undergone substantial development in the light of new research and the mechanisms for the interactions between piles, soil and rafts or caps have been largely clarified. Paradoxically, with relatively large piled rafts it has been found that a design based on the criterion of serviceability, with the limitation of absolute and/or differential settlement, not only allows a more rational and economical design, but is also simpler and more reliable than one based on the traditional approach. This book provides an overview of present design practice of piled foundations, under both vertical and horizontal loads, and then a presentation of recent advances in the analysis and design of piled rafts. Altogether it forms a thorough guide to the design and analysis of efficient and effective piled rafts, and it also serves as a useful design handbook for traditional pile foundations"--

Piled foundations are generally designed using empirical methods, in particular the traditional capacity based approach on which the majority of codes of practice are based. However in recent years the analysis of pile groups and piled rafts has undergone substantial development in the light of new research and the mechanisms for the interactions between piles, soil and rafts or caps have been largely clarified. Paradoxically, with relatively large piled rafts it has been found that a design based on the criterion of serviceability, with the limitation of absolute and/or differential settlement, not only allows a more rational and economical design, but is also simpler and more reliable than one based on the traditional approach.

This book provides an overview of present design practice of piled foundations, under both vertical and horizontal loads, and then a presentation of recent advances in the analysis and design of piled rafts. Altogether it forms a thorough guide to the design and analysis of efficient and effective piled rafts, and it also serves as a useful design handbook for traditional pile foundations.

List of illustrations
xi
Introduction 1(4)
PART I General
5(52)
1 Drained and undrained conditions; total and effective stress analysis
7(14)
1.1 Stress and pore pressure
7(1)
1.2 Permeability and seepage
8(1)
1.3 Principle of effective stress
9(2)
1.4 Consolidation
11(1)
1.5 Some examples
12(3)
1.5.1 In situ stress
12(2)
1.5.2 Piping
14(1)
1.5.3 One-dimensional consolidation
14(1)
1.6 Undrained conditions: analysis in terms of total stress
15(2)
1.7 Equivalence of the analysis in terms of total and effective stress in undrained conditions
17(4)
2 Review of pile types
21(29)
2.1 Introduction
21(3)
2.2 Replacement piles
24(12)
2.2.1 General
24(1)
2.2.2 Percussion boring
24(1)
2.2.3 Rotary boring
25(6)
2.2.4 Continuous flight auger piles
31(2)
2.2.5 Micropiles
33(3)
2.3 Displacement piles
36(10)
2.3.1 Driving equipment
36(3)
2.3.2 Prefabricated driven piles
39(2)
2.3.3 Cast in situ driven piles
41(3)
2.3.4 Displacement screw piles
44(2)
2.4 Partial displacement piles
46(3)
2.4.1 Driven H or tubular piles
46(1)
2.4.2 Large stem auger piles (PressoDrill, SVB)
47(2)
2.5 Advantages and shortcomings of the different pile types
49(1)
3 Design issues
50(7)
3.1 The steps of design
50(1)
3.2 Overall factor of safety
51(1)
3.3 Limit state design
52(5)
3.3.1 Introduction
52(1)
3.3.2 Ultimate Limit State -- ULS
53(1)
3.3.3 Serviceability limit state -- SLS
53(4)
PART II Present practice of piled foundations design under vertical loads
57(120)
4 Bearing capacity under vertical load
59(30)
4.1 Introduction
59(1)
4.2 Definition of bearing capacity
59(3)
4.3 Bearing capacity from fundamental soil properties
62(9)
4.3.1 Medium diameter piles; base resistance
62(3)
4.3.2 Medium diameter piles; shaft resistance
65(2)
4.3.3 Large diameter bored piles
67(2)
4.3.4 Micropiles
69(2)
4.4 Bearing capacity from correlation with penetrometer data
71(3)
4.4.1 CPT
71(3)
4.4.2 SPT
74(1)
4.5 Driving formulas
74(4)
4.6 The wave equation analysis
78(1)
4.7 Bearing capacity of pile groups
79(2)
4.8 Rock socketed piles
81(8)
4.8.1 Introduction
81(2)
4.8.2 Shaft resistance
83(1)
4.8.3 Base resistance
84(5)
5 Settlement
89(39)
5.1 Introduction
89(2)
5.2 Settlement of the single pile
91(14)
5.2.1 Empirical methods
91(1)
5.2.2 Load transfer curves
92(6)
5.2.3 Elastic continuum: simplified analytical solution
98(2)
5.2.4 Elastic continuum: solutions by BEM
100(5)
5.2.5 Solutions by FEM
105(1)
5.3 Settlement of pile groups
105(18)
5.3.1 Empirical methods
105(4)
5.3.2 Equivalent raft and equivalent pier
109(3)
5.3.3 Elastic continuum
112(4)
5.3.4 Evaluation of soil properties and implementation of the analysis
116(4)
5.3.5 Non-linearity
120(3)
5.4 Differential settlement
123(5)
6 Soil-structure interaction and the design of pile cap
128(23)
6.1 Introduction
128(2)
6.2 Design of the cap of small pile groups
130(5)
6.3 Design of the raft for large pile groups; the code NAPRA
135(4)
6.3.1 Introduction
135(1)
6.3.2 FEM analysis of the raft
136(1)
6.3.3 Closed form solution for soil displacements
137(1)
6.3.4 Piles as non-linear interacting springs
137(1)
6.3.5 Interaction between piles and raft elements
138(1)
6.3.6 Solution procedure
138(1)
6.4 Influence of the finite stiffness of the cap
139(4)
6.5 Influence of cap in contact and non-linearity of the piles
143(3)
6.6 Influence of creep
146(4)
6.7 Concluding remarks
150(1)
7 Pile testing
151(26)
7.1 Vertical load tests
151(11)
7.1.1 General
151(1)
7.1.2 Test equipment
152(4)
7.1.3 Test procedure
156(1)
7.1.4 Test interpretation
157(5)
7.2 Osterberg cell test
162(2)
7.3 Dynamic load test
164(9)
7.3.1 Introduction
164(2)
7.3.2 Experimental layout
166(2)
7.3.3 Dynamic tests and stress wave theory
168(3)
7.3.4 Results and interpretation
171(1)
7.3.5 Concluding remarks
172(1)
7.4 Horizontal load test
173(4)
7.4.1 Introduction
173(1)
7.4.2 Equipment and procedure
173(1)
7.4.3 Interpretation
174(3)
PART III Present practice of piled foundations design under horizontal loads
177(56)
8 Bearing capacity under horizontal load
179(17)
8.1 Introduction
179(1)
8.2 Bearing capacity of the single pile
179(15)
8.2.1 General
179(3)
8.2.2 Free-head pile, cohesive soils
182(3)
8.2.3 Fixed-head pile, cohesive soils
185(3)
8.2.4 Free-head pile, cohesionless soils
188(3)
8.2.5 Fixed-head pile, cohesionless soils
191(3)
8.2.6 Miscellaneous
194(1)
8.3 Bearing capacity of the pile group
194(2)
9 Displacements and bending moments
196(37)
9.1 Single pile
196(26)
9.1.1 Experimental evidence
196(6)
9.1.2 Winkler linear spring model
202(5)
9.1.3 Non-linear springs (p -- y curves)
207(1)
9.1.4 Characteristic load method
208(3)
9.1.5 Boundary Element Method
211(7)
9.1.6 Maximum bending moment
218(3)
9.1.7 Finite Element Method
221(1)
9.2 Pile groups
222(11)
9.2.1 Experimental evidence
222(6)
9.2.2 Methods of analysis
228(5)
PART IV Analysis and design of piled rafts
233(27)
10 Piled rafts
235(25)
10.1 Introduction
235(3)
10.2 Vertical bearing capacity
238(1)
10.3 Settlement
239(16)
10.3.1 Introduction
239(1)
10.3.2 Small rafts
240(6)
10.3.3 Large rafts
246(9)
10.4 Horizontal load
255(3)
10.5 Raft foundations with disconnected piles
258(2)
References 260(13)
Index 273
Carlo Viggiani is Emeritus Professor of Foundation Engineering at the University of Napoli Federico II and has been a member of the International Committee for the Safeguard of the Tower of Pisa.

Gianpiero Russo is Associate Professor of Foundation Engineering at the University of Napoli Federico II, Italy.

Alessandro Mandolini is Professor of Foundation Engineering at the Second University of Napoli, Italy.