Atjaunināt sīkdatņu piekrišanu

E-grāmata: Piping and Instrumentation Diagram Development [Wiley Online]

(University of Kansas, USA; University of Dalhousie, Canada)
  • Formāts: 496 pages
  • Izdošanas datums: 10-May-2019
  • Izdevniecība: Wiley-AIChE
  • ISBN-10: 1119329507
  • ISBN-13: 9781119329503
  • Wiley Online
  • Cena: 160,87 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 496 pages
  • Izdošanas datums: 10-May-2019
  • Izdevniecība: Wiley-AIChE
  • ISBN-10: 1119329507
  • ISBN-13: 9781119329503

An essential guide for developing and interpreting piping and instrumentation drawings

Piping and Instrumentation Diagram Development is an important resource that offers the fundamental information needed for designers of process plants as well as a guide for other interested professionals. The author offers a proven, systemic approach to present the concepts of P&ID development which previously were deemed to be graspable only during practicing and not through training. 

This comprehensive text offers the information needed in order to create P&ID for a variety of chemical industries such as: oil and gas industries; water and wastewater treatment industries; and food industries. The author outlines the basic development rules of piping and instrumentation diagram (P&ID) and describes in detail the three main components of a process plant: equipment and other process items, control system, and utility system. Each step of the way, the text explores the skills needed to excel at P&ID, includes a wealth of illustrative examples, and describes the most effective practices.

This vital resource:

  • Offers a comprehensive resource that outlines a step-by-step guide for developing piping and instrumentation diagrams
  • Includes helpful learning objectives and problem sets that are based on real-life examples
  • Provides a wide range of original engineering flow drawing (P&ID) samples
  • Includes PDF’s that contain notes explaining the reason for each piece on a P&ID and additional samples to help the reader create their own P&IDs

Written for chemical engineers, mechanical engineers and other technical practitioners, Piping and Instrumentation Diagram Development reveals the fundamental steps needed for creating accurate blueprints that are the key elements for the design, operation, and maintenance of process industries.

Preface xix
Acknowledgement xxiii
Part I: Fundamentals of P&ID Development 1(68)
1 What Is P&ID
3(6)
1.1 Why Is P&ID Important?
3(1)
1.2 What Is a P&ID?
4(1)
1.3 P&ID Media
4(1)
1.4 P&ID Development Activity
5(4)
2 Management of P&ID Development
9(6)
2.1 Project of Developing P&IDs
9(1)
2.2 P&ID Milestones
9(2)
2.3 Involved Parties in P&ID Development
11(1)
2.4 P&ID Set Owner
12(1)
2.5 Required Quality of the P&ID in Each Stage of Development
12(1)
2.6 P&ID Evolution
12(1)
2.7 Tracking Changes in P&IDs
12(1)
2.8 Required Man-Hours for the Development of P&IDs
13(2)
3 Anatomy of a P&ID Sheet
15(6)
3.1 Title Block
15(1)
3.2 Ownership Block
15(1)
3.3 Reference Drawing Block
15(1)
3.4 Revision Block
15(1)
3.5 Comments Block
16(3)
3.6 Main Body of a P&ID
19(2)
4 General Rules in Drawing of P&IDs
21(24)
4.1 Items on P&IDs
21(1)
4.1.1 Pipes or Other Flow Conductors
21(1)
4.1.2 Equipment
21(1)
4.1.3 Instruments
21(1)
4.1.4 Signals
22(1)
4.2 How to Show Them: Visual Rules
22(4)
4.2.1 Line Crossing Over
24(1)
4.2.2 Equipment Crossing
25(1)
4.2.3 Off-Page Connector
26(1)
4.2.4 Color in P&IDs
26(1)
4.3 Item Identifiers in P&IDs
26(6)
4.3.1 Symbols
27(1)
4.3.2 Tags
28(1)
4.3.3 Name
29(1)
4.3.4 Technical Information
29(3)
4.4 Different Types of P&IDs
32(7)
4.4.1 Legend P&IDs
33(1)
4.4.2 System P&IDs
34(1)
4.4.3 Network P&IDs
34(1)
4.4.4 Interarea P&IDs
34(2)
4.4.5 Detail P&IDs
36(3)
4.5 A Set of P&IDs
39(3)
4.6 P&IDs Prepared in Engineering Companies Compared to Manufacturing or Fabricating Companies
42(1)
4.7 Dealing with Vendor or Licensor P&IDs
43(2)
5 Principles of P&ID Development
45(24)
5.1 Plant Stakeholders
45(1)
5.2 The Hierarchy of P&ID Development Rules
45(1)
5.3 Plant Operations
46(7)
5.3.1 Process Parameters
46(1)
5.3.2 Process Parameter Levels
47(3)
5.3.2.1 Pressure Levels
48(1)
5.3.2.2 Temperature Levels
49(1)
5.3.2.3 Liquid/Solid Levels
49(1)
5.3.2.4 Flow Levels SO
5.3.2.5 Analyte Levels
50(1)
5.3.3 Parameter Levels versus Control System
50(1)
5.3.4 Parameter Levels versus Safety
51(1)
5.3.5 Parameter Levels versus Operator Role
52(1)
5.3.6 General Procedure of P&ID Development
53(1)
5.4 What Should a P&ID Address?
53(10)
5.4.1 Normal Operation
53(1)
5.4.2 Nonroutine Operation
53(4)
5.4.2.1 Reduced Capacity Operation
54(3)
5.4.3 Reduced Efficiency Operation
57(1)
5.4.4 Start-Up Operations
58(1)
5.4.5 Shutdown
59(1)
5.4.6 Inspection and Maintenance
60(1)
5.4.6.1 Quantitative Approach to Maintenance Requirement
60(1)
5.4.6.2 Qualitative Approach to Maintenance Requirement
60(1)
5.4.7 Operability in Absence of One Item
61(1)
5.4.8 Provision for the Future
61(2)
5.5 Conflicting Check and Merging Opportunities Check
63(1)
5.5.1 Conflict Check
63(1)
5.5.2 Merging Opportunities Check
63(1)
5.6 Dealing with Common Challenges in P&ID Development
64(1)
5.7 Example: Development of P&ID of a Typical Pump
65(4)
Part II: Pipes and Equipment 69(170)
6 Pipes
71(34)
6.1 Fluid Conductors: Pipes, Tubes, and Ducts
71(1)
6.2 Pipe Identifiers
71(3)
6.2.1 Pipe Symbol
71(1)
6.2.2 Pipe Tag
71(3)
6.2.2.1 Do All Pipes Need to be Tagged?
73(1)
6.2.2.2 Which Span of Pipe Route can be Considered One Piece of Pipe?
73(1)
6.2.2.3 How is the Pipe Tag Shown on a P&ID?
73(1)
6.2.3 Pipe Off-Page Connector
74(1)
6.3 Pipe Tag Anatomy
74(5)
6.3.1 Area or Project Number
74(1)
6.3.2 Commodity Acronym
74(1)
6.3.3 Pipe Material Specification Code
74(3)
6.3.4 Pipe Size
77(1)
6.3.5 Pipe Sequential Number
78(1)
6.3.6 Other Pipe Tag Information
78(1)
6.4 Pipes Crossing "Borders"
79(3)
6.4.1 Implementing Spec Break
80(2)
6.4.2 Reasons for a Spec Break
82(1)
6.5 Goal of Piping
82(2)
6.5.1 Magnitude of Flow in Pipe
83(1)
6.5.2 Direction of Flow in Pipe
84(1)
6.5.3 Providing Fluid with Enough Pressure at the Inlet
84(1)
6.6 Piping Arrangements
84(4)
6.6.1 Backflow Prevention Systems
85(2)
6.6.2 Diversion of Flow
87(1)
6.6.3 Distribution of Flow
87(1)
6.7 Pipe Route
88(3)
6.7.1 Slope
88(1)
6.7.2 No Liquid Pocket
89(1)
6.7.3 No Gas Pocket
89(1)
6.7.4 Free Draining (Self-Draining)
89(1)
6.7.5 Free Venting
90(1)
6.7.6 Gravity Flow
90(1)
6.7.7 Vertical or Horizontal Pipe
90(1)
6.7.8 Straight Piping
90(1)
6.7.9 Minimum or Maximum Length or Distance
90(1)
6.7.10 Other Special Pipe Routes
91(1)
6.8 Piping Movement
91(1)
6.9 Dealing with Unwanted Two-Phase Flow in Pipes
92(2)
6.9.1 Liquid-Gas Two-Phase Flow
92(2)
6.9.2 Gas-Liquid Two-Phase Flow
94(1)
6.9.3 Solid-Liquid Two-Phase Flow
94(1)
6.10 Tubes
94(1)
6.11 Double-Wall Pipes
95(1)
6.12 Pipes for Special Arrangements
96(1)
6.12.1 Piping for Bypassing
96(1)
6.12.2 Piping for Recirculation
96(1)
6.12.3 Piping for Units in Series
96(1)
6.12.4 Piping for Units in Parallel
97(1)
6.12.5 Piping for Pressure Equalization
97(1)
6.13 Pipe Size Rule of Thumbs
97(1)
6.14 Pipe Appurtenances
97(6)
6.14.1 Pipe Fittings
98(4)
6.14.1.1 Pipe Direction Change
98(1)
6.14.1.2 Reducers (Enlargers)
98(2)
6.14.1.3 Three-Way Connections
100(1)
6.14.1.4 Pipe Connections
100(1)
6.14.1.5 End-of-Pipe Systems
100(2)
6.14.2 Specialty Items
102(3)
6.14.2.1 Flange-Insulating Gasket
102(1)
6.15 Other Approach about Piping
103(1)
6.16 "Merging" Pipes
103(1)
6.17 Wrapping-Up: Addressing Requirements of Pipe during the Life Span
103(1)
6.18 Transferring Bulk Solid Materials
104(1)
Reference
104(1)
7 Manual Valves and Automatic Valves
105(24)
7.1 Valve Naming
105(1)
7.2 Valve Functions
105(1)
7.3 Valve Structure
105(1)
7.4 Classification of Valves
105(5)
7.4.1 Valve Plug: Throttling vs. Blocking Valves
106(2)
7.4.2 Valve Selection
108(1)
7.4.3 Multi-port Valves
108(2)
7.4.4 Double-Seated Valves
110(1)
7.5 Valve Operators
110(1)
7.6 Different Types of Actuators
111(1)
7.7 Basis of Operation for Automatic Valves
112(1)
7.8 Tagging Automatic Valves
113(1)
7.9 Tagging Manual Valves
113(1)
7.10 Valve Positions
113(4)
7.10.1 Regular Position of Blocking Valves and Decision Methodology
113(1)
7.10.2 Failure Position of Automatic Valves and Decision Methodology
114(1)
7.10.3 More Concepts about Failure Position of Automatic Valves
115(2)
7.11 Valve Arrangement
117(2)
7.11.1 Valves in Series
118(1)
7.11.2 Valves in Parallel
118(1)
7.12 Control Valves and RO Combinations
119(1)
7.13 Operating in the Absence of Valves
119(4)
7.13.1 Operating in the Absence of Control Valves
119(3)
7.13.2 Operating in the Absence of Switching Valves
122(1)
7.14 Valves in Role of Unit Operation
122(1)
7.15 Special Valves
123(3)
7.15.1 Check Valves
123(1)
7.15.2 Regulators
124(1)
7.15.3 Safety-Related Valves
125(1)
7.16 Valve Combinations
126(1)
7.17 End of Valve Arrangements
126(1)
7.18 Valve Sizing Rule of Thumbs
127(1)
7.19 Merging Valves
127(1)
7.20 Wrapping Up: Addressing Requirements of Valve During the Life Span
127(1)
References
128(1)
8 Provisions for Ease of Maintenance
129(14)
8.1 Introduction
129(1)
8.2 Different Types of Equipment Care
129(1)
8.3 In-place In-line Equipment Care
129(1)
8.4 In-place Off-line Equipment Care
130(1)
8.5 In-workshop Off-line Equipment Care
131(1)
8.6 Preparing Equipment for Off-line Care
131(1)
8.7 Isolation
131(5)
8.7.1 Requirement of an Isolation System
131(1)
8.7.2 Type of Isolation System
132(3)
8.7.3 Placement of an Isolation System
135(1)
8.7.4 Inbound Versus Outbound Blind Location
135(1)
8.7.5 Merging Isolation Valves
135(1)
8.8 Bringing the Equipment to a Non-harmful Condition
136(3)
8.8.1 Cooling Down
136(1)
8.8.2 Emptying and Then Draining/Venting
136(3)
8.8.2.1 Location and Number of Drain/Vent Valves
137(1)
8.8.2.2 Size of Drain/Vent Valves
138(1)
8.8.2.3 Other Usages of Drain/Vent Valves
138(1)
8.9 Cleaning
139(1)
8.9.1 Solid/Semi-Solid Removal Methods
139(1)
8.9.2 Washing Systems
139(1)
8.9.3 Purging Methods
140(1)
8.10 Ultimate Destination of Dirty Fluids
140(1)
8.11 Making Equipment Easy to Remove
141(1)
8.12 Wrap-up
142(1)
9 Containers
143(26)
9.1 Introduction
143(1)
9.2 Selection of Containers
143(1)
9.3 Containers Purposes
144(1)
9.4 Transferring Fluids Between Containers
145(1)
9.5 Container Positions
146(1)
9.6 Container Shapes
147(1)
9.6.1 Closing Parts of Containers
148(1)
9.6.2 Open Top or Fully Enclosed Containers
148(1)
9.7 Container Identifiers
148(3)
9.7.1 Container Symbol
148(1)
9.7.2 Container Tags
149(1)
9.7.3 Container Call-outs
149(2)
9.7.3.1 Tank Call-outs
149(1)
9.7.3.2 Vessel Call-outs
150(1)
9.7.3.3 Tag of Container in Duty of Conversion
151(1)
9.8 Levels in Non-flooded Liquid Containers
151(1)
9.9 Container Nozzles
151(6)
9.9.1 Nozzle Duties
151(1)
9.9.2 Nozzle Locations
152(1)
9.9.3 Nozzle Elevation Versus Liquid Levels
153(2)
9.9.4 The Size, Number, and Rating of Nozzles
155(1)
9.9.5 Merging Nozzles
155(1)
9.9.6 Nozzle Internal Assemblies
156(1)
9.9.7 Nozzle Externals
157(1)
9.10 Overflow Nozzles
157(1)
9.11 Breathing of Non-flooded Containers
158(2)
9.12 Blanketed Tanks
160(1)
9.13 Heating (or Cooling) in Containers
161(1)
9.14 Mixing in Containers
162(1)
9.15 Container Internals
162(1)
9.16 Tank Roofs
162(1)
9.17 Tank Floors
163(1)
9.18 Container Arrangement
164(1)
9.19 Merging Containers
164(1)
9.20 Secondary Containment
165(1)
9.21 Underground Storage Tanks
166(1)
9.22 Sumps
167(1)
9.23 Wrapping-up: Addressing the Requirements of the Container During its Lifespan
167(2)
10 Pumps and Compressors
169(32)
10.1 Introduction
169(1)
10.2 Fluid Mover Roles
169(1)
10.3 Types of Fluid Movers
169(1)
10.4 A Brief Discussion on the Function of Fluid Movers in a System
169(2)
10.5 Fluid Mover Identifiers
171(2)
10.5.1 Fluid Mover Symbol
171(1)
10.5.2 Fluid Mover Tag
171(2)
10.5.3 Fluid Mover Call-out
173(1)
10.6 Liquid Movers: Dynamic Pumps
173(17)
10.6.1 Centrifugal Pumps
173(3)
10.6.1.1 P&ID Development on the Suction Side
174(1)
10.6.1.2 P&ID Development on the Discharge Side
175(1)
10.6.2 Low Flow Intolerance and Minimum Flow Protection System
176(4)
10.6.2.1 Which Pumps May Need a Minimum Flow Pipe
176(1)
10.6.2.2 Where Should we Position the Recirculation Line?
177(1)
10.6.2.3 Where Should the Destination Point of the Recirculation Pipe Be?
177(1)
10.6.2.4 What Should the Size of the Recirculation Pipe Be?
178(1)
10.6.2.5 What Should the Arrangement on the Recirculation Pipe Be?
178(2)
10.6.3 Cavitation
180(1)
10.6.4 Very Small Centrifugal Pumps
181(1)
10.6.5 Different Types of Spare Pump
182(1)
10.6.6 Centrifugal Pump Arrangements
182(3)
10.6.6.1 Centrifugal Pumps in Parallel
183(1)
10.6.6.2 Centrifugal Pumps in Series
184(1)
10.6.7 Pump Warm-up or Cool-down System
185(2)
10.6.8 Piping Spec. for Centrifugal Pumps
187(1)
10.6.9 Centrifugal Pump Drives
187(1)
10.6.10 (Liquid) Seal Systems in Centrifugal Pumps
187(2)
10.6.11 Merging Pumps
189(1)
10.7 Liquid Movers: PD Pumps
190(6)
10.7.1 PD Pump P&ID Piping
191(2)
10.7.1.1 Reciprocating Pumps P&ID Piping
191(1)
10.7.1.2 Rotary Pumps P&ID Piping
192(1)
10.7.2 PD Pump Arrangements
193(1)
10.7.3 Merging PD Pumps
193(1)
10.7.4 Tying Together Dissimilar Pumps
193(1)
10.7.5 PD Pump Drives
193(1)
10.7.6 Sealing Systems for PD Pumps
194(1)
10.7.7 Metering Pumps (Dosing Pumps)
194(1)
10.7.8 Liquid Transfer-Summary
195(1)
10.7.9 Pumps: Duty Other than Pumping!
195(1)
10.8 Gas Movers: Fans, Blowers, Compressors
196(4)
10.8.1 Low Flow Intolerance and Anti-Surge Systems
196(1)
10.8.2 P&ID Development of Gas Movers
197(1)
10.8.3 Gas Mover Drives
198(1)
10.8.4 Auxiliary Systems Around Fluid Movers
198(1)
10.8.5 Gas Transfer-Summary
199(1)
10.9 Wrapping-up: Addressing Requirements of Fluid Movers During the Life Span
200(1)
Reference
200(1)
11 Heat Transfer Units
201(16)
11.1 Introduction
201(1)
11.2 Main Types of Heat Transfer Units
201(1)
11.3 Different Types of Heat Exchangers and Their Selection
202(1)
11.4 Different Types of Heat Transfer Fluids and Their Selection
203(1)
11.5 Heat Exchangers: General Naming
204(1)
11.6 Heat Exchanger Identifiers
204(2)
11.6.1 Heat Exchanger Symbol
204(1)
11.6.2 Heat Exchanger Tag
204(1)
11.6.3 Heat Exchanger Call-Out
205(1)
11.7 Heat Exchanger P&ID
206(1)
11.7.1 Vents and Drains
206(1)
11.7.2 Isolation Valves
207(1)
11.7.3 Chemical Cleaning Valves
207(1)
11.7.4 PSDs
207(1)
11.8 Heat Exchanger Arrangement
207(2)
11.8.1 Heat Exchangers in Series
207(2)
11.8.2 Heat Exchangers in Parallel
209(1)
11.9 Aerial Coolers
209(3)
11.9.1 Aerial Cooler P&ID
210(1)
11.9.2 Dealing with Extreme Temperatures
211(1)
11.9.3 Aerial Cooler Arrangement
211(1)
11.10 Merging Heat Exchangers
212(1)
11.11 Wrapping-up: Addressing the Requirements of a Heat Exchanger During its Life Span
212(1)
11.12 Fired Heaters and Furnaces
213(2)
11.12.1 Process Fluid Side
213(1)
11.12.2 Flue Gas Side
213(1)
11.12.3 Firing Side
214(1)
11.13 Fire Heater Arrangement
215(1)
11.14 Merging Fired Heaters
216(1)
11.15 Wrapping-up: Addressing the Requirements of Fired Heaters During their Lifespan
216(1)
12 Pressure Relief Devices
217(22)
12.1 Introduction
217(1)
12.2 Why Pressure Is So Important?
217(1)
12.3 Dealing with Abnormal Pressures
217(2)
12.3.1 Active Versus Passive Solutions
219(1)
12.3.2 Where Could Passive Solutions Be Used?
219(1)
12.3.3 Where Should Active Solutions Be Used?
219(1)
12.4 Safety Relief System
219(1)
12.5 What Is an "Enclosure," and Which "Side" Should Be Protected?
220(1)
12.6 Regulatory Issues Involved in PRVs
220(2)
12.6.1 Codes Versus Standards
221(1)
12.7 PRD Structure
222(1)
12.8 Six Steps to Providing a Protective Layer
222(1)
12.9 Locating PRDs
223(1)
12.10 Positioning PRDs
223(2)
12.11 Specifying the PRD
225(1)
12.12 Selecting the Right Type of PRD
225(1)
12.12.1 Pressure Relief Valve Type
225(1)
12.12.2 Rupture Disks
226(1)
12.12.3 Decision General Rules
226(1)
12.13 PRD Identifiers
226(2)
12.13.1 PRD Symbols and Tags
226(1)
12.13.2 PRD Technical Information
227(1)
12.14 Selecting the Right Type of PRD Arrangement
228(2)
12.15 Deciding on an Emergency Release Collecting Network
230(2)
12.16 Deciding on a Disposal System
232(3)
12.16.1 Liquid Disposal
232(1)
12.16.2 Gas/Vapor Disposal
233(1)
12.16.3 Two-Phase Flow Handling
234(1)
12.17 Protecting Atmospheric Containers
235(1)
12.18 Merging PRDs
236(2)
12.19 Wrapping-Up: Addressing the Requirements of PRDs During their Lifespan
238(1)
Part III: Instrumentation and Control System 239(118)
13 Fundamentals of Instrumentation and Control
241(28)
13.1 What Is Process Control?
241(1)
13.2 Components of Process Control Against Violating Parameters
241(1)
13.3 Parameters Versus Steering/Protecting Components
242(1)
13.4 How Many Steering Loops Are Needed?
242(1)
13.5 ICSS System Technology
243(2)
13.5.1 Use of PLC for a BPCS
243(1)
13.5.2 Use of DCS for a SIS
244(1)
13.5.3 Alarm Systems
244(1)
13.5.4 ICSS System Symbology
244(1)
13.6 ICSS Elements
245(1)
13.7 Basic Process Control System (BPCS)
245(2)
13.8 Instruments on P&IDs
247(1)
13.8.1 Fundamental Terminology
247(1)
13.8.2 Identifiers for Equipment and Instrumentation
247(1)
13.9 Instrument Identifiers
248(4)
13.9.1 Acronyms
248(1)
13.9.2 Divider Types
249(1)
13.9.3 Symbol Type
250(2)
13.9.4 Additional Information and Tag Number
252(1)
13.10 Signals: Communication Between Instruments
252(3)
13.10.1 Signal Types
253(1)
13.10.2 Signal Functions
253(1)
13.10.3 Signal Math Functions
254(1)
13.10.4 Signal Selectors
254(1)
13.11 Different Instrument Elements
255(14)
13.11.1 Primary Instruments
255(7)
13.11.1.1 Temperature Measurement
256(1)
13.11.1.2 Pressure Measurement
257(1)
13.11.1.3 Level Measurement
258(1)
13.11.1.4 Flow Measurement
258(2)
13.11.1.5 Process Analyzers
260(2)
13.11.2 Transmitters
262(1)
13.11.3 Controllers
263(1)
13.11.4 Indicators
263(1)
13.11.5 Final Control Elements in a BPCS
263(1)
13.11.5.1 Control Valves
264(1)
13.11.5.2 Variable Speed Devices on Electric Motors
264(1)
13.12 Simple Control Loops
264(2)
13.12.1 Level Control Loops
265(1)
13.12.2 Pressure Control Loops
265(1)
13.12.3 Temperature Control Loops
265(1)
13.12.4 Composition Control Loops
266(1)
13.12.5 Flow Control Loops
266(1)
13.13 Position of Sensor Regarding Control Valves
266(3)
14 Application of Control Architectures
269(24)
14.1 Introduction
269(1)
14.2 Control System Design
269(1)
14.3 Selecting the Parameter to Control
269(1)
14.4 Identifying the Manipulated Stream
270(1)
14.5 Determining the Set Point
271(1)
14.6 Building a Control Loop
272(2)
14.6.1 Feedback Versus Feedforward
272(1)
14.6.2 Single-versus Multiple-Loop Control
273(1)
14.7 Multi-Loop Control Architectures
274(2)
14.7.1 Cascade Control
274(2)
14.8 Feedforward Plus Feedback Control
276(13)
14.8.1 Ratio or Relationship Control
279(1)
14.8.2 Selective Control
280(1)
14.8.3 Override and Limit Control
281(5)
14.8.3.1 Override Control
283(3)
14.8.3.2 Limit Control
286(1)
14.8.4 Split Range and Parallel Control
286(2)
14.8.5 Clarification of Confusion
288(1)
14.8.5.1 Cascade Versus Ratio
288(1)
14.8.5.2 Single Loop Versus Ratio
288(1)
14.8.5.3 Selective Versus Override
288(1)
14.9 Monitoring Parameters
289(4)
14.9.1 Container Sensors
290(1)
14.9.2 Fluid Mover Sensors
290(1)
14.9.3 Heat Exchanger Sensors
291(1)
14.9.4 Fired Heater Sensors
291(2)
15 Plant Process Control
293(40)
15.1 Introduction
293(1)
15.2 Plant-Wide Control
293(1)
15.3 Heat and Mass Balance Control
293(2)
15.4 Surge Control
295(7)
15.4.1 Disturbances in Process Parameters
295(1)
15.4.2 Disturbance Management
296(1)
15.4.2.1 Absorption
296(1)
15.4.2.2 Rejection
296(1)
15.4.3 Disturbance Versus Fluid Phase
296(1)
15.4.4 Dampening Gas/Vapor Flow Surge
297(1)
15.4.5 Dampening Liquid Flow Surge
298(3)
15.4.6 The Purpose of Containers in Process Plants
301(1)
15.5 Equipment Control
302(2)
15.5.1 Do We Need to Control at All?
302(1)
15.5.2 Principles of Equipment-wise Control
302(2)
15.6 Pipe Control System
304(5)
15.6.1 Control of a Single Pipe
304(2)
15.6.1.1 Control of Pressure in a Pipe
304(1)
15.6.1.2 Control of Flow in a Pipe
304(2)
15.6.2 Controlling Multiple Pipes
306(3)
15.6.2.1 Flow Merging
306(2)
15.6.2.2 Flow Splitting
308(1)
15.7 Fluid Mover Control System
309(11)
15.7.1 Pump Control Systems
310(6)
15.7.1.1 Centrifugal Pump Control
310(4)
15.7.1.2 Positive Displacement (PD) Pump
314(2)
15.7.2 Gas Mover Control Systems
316(3)
15.7.2.1 Capacity Control Methods for Gas Movers
316(3)
15.7.3 Anti-Surge Control
319(1)
15.7.4 Lead-Lag Operation of Fluid-Movers
319(1)
15.8 Heat Transfer Equipment Control
320(11)
15.8.1 Heat Exchanger Control System
320(7)
15.8.1.1 Direct Control System
320(1)
15.8.1.2 Bypass Control System
321(3)
15.8.1.3 Control of Heat Exchangers Experiencing Phase Change
324(3)
15.8.2 Air Cooler Control
327(1)
15.8.3 Heat Exchanger for Heat Recovery
327(1)
15.8.4 Back Pressure Control of Heat Exchangers
328(1)
15.8.5 Fired Heater Control
328(3)
15.9 Container Control System
331(1)
15.10 Blanket Gas Control Systems
332(1)
Reference
332(1)
16 Plant Interlocks and Alarms
333(24)
16.1 Introduction
333(1)
16.2 Safety Strategies
333(1)
16.3 Concept of a SIS
333(1)
16.4 SIS Actions and SIS Types
333(3)
16.5 SIS Extent
336(1)
16.6 Deciding on the Required SIS
336(1)
16.7 The Anatomy of a SIS
336(4)
16.7.1 SIS Element Symbols
336(1)
16.7.1.1 SIS Primary Elements: Sensors
337(1)
16.7.2 SIS Final Elements
337(2)
16.7.2.1 Switching Valves
337(1)
16.7.2.2 Switching Valve Actuator Arrangements
338(1)
16.7.2.3 Valve Position Validation
338(1)
16.7.2.4 Merging a Switching Valve and a Control Valve
338(1)
16.7.2.5 On/off Action of Electric Motors
339(1)
16.7.3 SIS Logic
339(1)
16.8 Showing Safety Instrumented Functions on P&IDs
340(3)
16.9 Discrete Control
343(1)
16.10 Alarm System
344(3)
16.10.1 Anatomy of Alarm Systems
345(1)
16.10.2 Alarm Requirements
345(1)
16.10.3 Alarm System Symbology
346(1)
16.10.4 Concept of "Common Alarm"
347(1)
16.11 Fire and Gas Detection System (FGS)
347(4)
16.11.1 Manual Alarm
350(1)
16.12 Electric Motor Control
351(8)
16.12.1 Simple Motor Control
351(1)
16.12.2 The Focal Element of Motor Control: MCC
351(1)
16.12.3 All About Relationships with Electric Motors
351(1)
16.12.4 P&ID Representation of Commands and Responses
352(1)
16.12.5 P&ID Representation of Principal Arrangement for Inspection and Repair
353(2)
16.12.6 Examples
355(2)
Part IV: Utilities 357(22)
17 Utilities
359(20)
17.1 Utility System Components
359(1)
17.2 Developing P&IDs for Utility Systems
359(4)
17.2.1 Identifying the Utility Users
359(1)
17.2.2 Utility Distribution and Collection Network Topologies
359(2)
17.2.3 Designing the Detail of a Utility Network
361(1)
17.2.4 Placing Priority on Utility Users
362(1)
17.2.5 Connection Details of Utility to Process
363(1)
17.3 Different Utilities in Plants
363(1)
17.4 Air as a Utility in Process Plants
363(1)
17.4.1 Instrument Air (IA)
363(1)
17.4.2 Utility Air (UA) or Plant Air (PA)
364(1)
17.5 Water as a Utility in Process Plants
364(1)
17.5.1 Utility Water (UW) or Plant Water (PW)
364(1)
17.5.2 Potable Water
364(1)
17.6 Heat Transfer Media
364(2)
17.6.1 Steam
365(1)
17.7 Condensate Collection Network
366(1)
17.8 Fuel as Utility
366(1)
17.8.1 Fuel Oil
366(1)
17.8.2 Fuel Gas
366(1)
17.9 Inert Gas
367(1)
17.9.1 Blanket Gas
367(1)
17.9.2 Purging Gas
367(1)
17.10 Vapor Collection Network
367(1)
17.11 Emergency Vapor/Gas Release Collection Network
368(1)
17.12 Fire Water
368(2)
17.13 Surface Drainage Collection Network or Sewer System
370(2)
17.14 Utility Circuits
372(3)
17.14.1 Air Circuit
372(2)
17.14.2 Steam-Condensate Circuit
374(1)
17.14.3 Cooling Water Circuit
375(1)
17.14.4 Natural Gas Preparation System
375(1)
17.15 Connection Between Distribution and Collecting Networks
375(4)
Part V: Additional Information and General Procedure 379(74)
18 Ancillary Systems and Additional Considerations
381(24)
18.1 Introduction
381(1)
18.2 Safety Issues
381(3)
18.2.1 Different Types of Hazards
381(1)
18.2.2 Hazards and Injuries
381(1)
18.2.3 Mechanical Hazards
381(1)
18.2.4 Chemical Hazards
382(1)
18.2.5 Energy Hazards
382(1)
18.2.5.1 Noise Barrier
382(1)
18.2.5.2 Burning Prevention
382(1)
18.2.6 Safety Showers and Eye Washers
383(1)
18.3 Dealing with Environment
384(6)
18.3.1 Arrangements for Maintaining the Temperature of the Process
384(1)
18.3.2 Winterization
385(4)
18.3.3 Deciding on the Extent of Insulation
389(1)
18.3.4 Summary of Insulation
390(1)
18.4 Utility Stations
390(2)
18.5 Off-Line Monitoring Programs
392(4)
18.5.1 The Program Component
392(1)
18.5.2 Sampling System
393(1)
18.5.3 Sample Extraction Device
393(1)
18.5.4 Sample Transferring Tube
394(1)
18.5.5 Sample Conditioning System
394(1)
18.5.6 Sample Hand-Over System
395(1)
18.5.7 Waste Sample Collection System
395(1)
18.5.8 Sampling Station Structural Frame
395(1)
18.5.9 Showing a Sampling System on P&IDs
396(1)
18.5.10 Sampling System for Process Analyzers
396(1)
18.6 Corrosion Monitoring Program
396(1)
18.7 Impact of the Plant Model on the P&ID
397(1)
18.8 Design Pressure and Temperature Considerations
398(7)
18.8.1 Decision on "Design Pressure @ Design Temperature" Pair
399(1)
18.8.1.1 Deciding on "Design Pressure"
399(1)
18.8.1.2 Deciding on "Design Temperature"
399(1)
18.8.2 Sources of Rebel Pressures
400(1)
18.8.3 Sources of Rebel Temperatures
400(1)
18.8.4 Design Pressure and Design Temperature of Single Process Elements
400(1)
18.8.5 Design Pressure of Connected Items
401(4)
18.8.5.1 Design Pressure of Connected Equipment-Equipment
402(1)
18.8.5.2 Design Pressure of Connected Equipment-Sensor
403(2)
19 General Procedures
405(12)
19.1 Introduction
405(1)
19.2 General Procedure for P&ID Development
405(4)
19.2.1 P&ID Development: Piping and Equipment
405(1)
19.2.2 P&ID Development: Control and Instruments
406(3)
19.3 P&ID Reviewing and Checking
409(3)
19.3.1 Format Check
409(1)
19.3.2 Demonstration Rules Check
410(1)
19.3.3 Technical Check
410(2)
19.3.4 Design Check
412(1)
19.4 Methods of P&ID Reviewing and Checking
412(1)
19.4.1 Systematic Approach
412(1)
19.4.2 Scanning Approach
412(1)
19.5 Required Quality of P&IDs at Each Stage of Development
413(4)
20 Examples
417(36)
Index 453
MOE TOGHRAEI is an independent consultant and instructor. He has more than 20 years of experience in the chemical process industries. He provides consultancy in process and project engineering areas. He also has developed and instructed dozens of technical courses, including tailor-made courses for companies, public courses and online courses. His online courses are available through the University of Kansas and University of Dalhousie.