Atjaunināt sīkdatņu piekrišanu

Pistons and engine testing 2nd ed. 2016 [Hardback]

  • Formāts: Hardback, 295 pages, height x width: 235x168 mm, weight: 760 g, XIII, 295 p., 1 Hardback
  • Sērija : ATZ/MTZ-Fachbuch
  • Izdošanas datums: 15-Mar-2016
  • Izdevniecība: Springer Vieweg
  • ISBN-10: 3658099402
  • ISBN-13: 9783658099404
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 82,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 97,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 295 pages, height x width: 235x168 mm, weight: 760 g, XIII, 295 p., 1 Hardback
  • Sērija : ATZ/MTZ-Fachbuch
  • Izdošanas datums: 15-Mar-2016
  • Izdevniecība: Springer Vieweg
  • ISBN-10: 3658099402
  • ISBN-13: 9783658099404
Citas grāmatas par šo tēmu:
The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece-the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and manufacturing processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific expertise of this kind, whether they work in the field of design, development, testing, or maintenance. This technical book answers these questions in detail and in a very clear and comprehensible way. In this second, revised edition, every chapter has been revised and expanded. The chapter on "Engine testing", for example, now include extensive results in the area of friction power loss measurement and lube oil consumption measurement.

Piston functions, requirements, and types.- Design guidelines.- Simulation of the operational strength using FEM.- Materials.- Cooling.- Component testing.- Engine testing. 
1 Piston function, requirements, and types
1(24)
1.1 Function of the piston
1(2)
1.1.1 The piston as an element of power transmission
1(1)
1.1.2 Sealing and heat dissipation
2(1)
1.1.3 Variety of tasks
3(1)
1.2 Requirements on the piston
3(7)
1.2.1 Gas force
5(1)
1.2.2 Temperatures
5(2)
1.2.3 Piston mass
7(1)
1.2.4 Friction power loss and wear
8(2)
1.2.5 Blow-by
10(1)
1.3 Piston types
10(15)
1.3.1 Pistons for four-stroke gasoline engines
11(1)
1.3.1.1 Controlled-expansion pistons
11(1)
1.3.1.2 Box-type pistons
12(1)
1.3.1.3 EVOTEC® pistons
13(1)
1.3.1.4 EVOTEC®2 pistons
14(1)
1.3.1.5 Forged aluminum pistons
15(1)
1.3.2 Pistons for two-stroke engines
15(1)
1.3.3 Pistons for diesel engines
16(1)
1.3.3.1 Ring carrier pistons
16(1)
1.3.3.2 Cooling gallery pistons
16(1)
1.3.3.3 Pistons with cooled ring carrier
17(1)
1.3.3.4 Pistons with bushings in the pin bore
18(1)
1.3.3.5 FERROTHERM® pistons
18(1)
1.3.3.6 MONOTHERM® pistons
19(1)
1.3.3.7 Optimized MONOTHERM® pistons
19(1)
1.3.3.8 MonoWeld® pistons
20(1)
1.3.3.9 Electron beam-welded pistons
20(1)
1.3.4 Composite pistons for large-bore engines
21(1)
1.3.4.1 Areas of application and design types
21(1)
1.3.4.2 Piston upper part
22(1)
1.3.4.3 Piston skirt made of forged aluminum-base alloy
22(1)
1.3.4.4 Piston skirt made of nodular cast iron
23(1)
1.3.4.5 Piston skirt made of forged steel
23(2)
2 Piston design guidelines
25(12)
2.1 Terminology and major dimensions
25(7)
2.1.1 Crown shapes and crown thickness
26(1)
2.1.2 Compression height
27(1)
2.1.3 Top land
27(1)
2.1.4 Ring grooves and ring lands
28(1)
2.1.5 Total height
29(1)
2.1.6 Pin bore
29(1)
2.1.6.1 Surface roughness
29(1)
2.1.6.2 Installation clearance
29(1)
2.1.6.3 Tolerances
30(1)
2.1.6.4 Piston pin offset
30(1)
2.1.7 Piston skirt
30(2)
2.2 Piston profile
32(5)
2.2.1 Piston clearance
32(1)
2.2.2 Ovality
32(1)
2.2.3 Skirt and ring belt tapering
33(1)
2.2.4 Dimensional and form tolerances
34(1)
2.2.5 Installation clearance
35(1)
2.2.6 Defining group
35(1)
2.2.7 Skirt surface
36(1)
3 Simulation of piston operational strength using FEA
37(22)
3.1 Modeling
37(2)
3.2 Boundary conditions from engine loading
39(4)
3.2.1 Thermal load
39(2)
3.2.2 Mechanical load
41(1)
3.2.2.1 Gas force
41(1)
3.2.2.2 Inertia force
41(1)
3.2.2.3 Lateral force
42(1)
3.3 Boundary conditions due to manufacturing and assembly
43(1)
3.3.1 Casting process/solidification
43(1)
3.3.2 Inserts
43(1)
3.3.3 Pressed-in components
43(1)
3.3.4 Screw joints
44(1)
3.4 Temperature field and heat flow due to temperature loading
44(4)
3.5 Stress behavior
48(5)
3.5.1 Stresses due to temperature loading
48(2)
3.5.2 Stresses due to mechanical loading
50(3)
3.5.3 Stresses due to manufacturing and assembly
53(1)
3.6 Numerical verification of operational strength
53(6)
4 Piston materials
59(24)
4.1 Requirements for piston materials
59(1)
4.2 Aluminum materials
60(9)
4.2.1 Heat treatment
61(2)
4.2.2 Piston alloys
63(5)
4.2.3 Fiber reinforcement
68(1)
4.3 Ferrous materials
69(7)
4.3.1 Cast iron materials
70(3)
4.3.2 Steels
73(3)
4.4 Copper materials for pin bore bushings
76(2)
4.5 Coatings
78(5)
4.5.1 Piston coatings
78(1)
4.5.1.1 GRAFAL® 255 and EvoGlide
78(1)
4.5.1.2 Tin
79(1)
4.5.1.3 Ferrostan/FerroTec®
79(1)
4.5.1.4 FERROPRINT®
79(1)
4.5.1.5 Hard oxide in the top ring groove
79(1)
4.5.1.6 Hard oxide on the crown
80(1)
4.5.1.7 Phosphate
80(1)
4.5.1.8 GRAFAL® 210
80(1)
4.5.1.9 Chromium contact surfaces
80(1)
4.5.1.10 Chromium ring grooves
81(1)
4.5.2 Application table
81(2)
5 Piston cooling
83(24)
5.1 Thermal loads
83(1)
5.2 Combustion and flame jets
83(1)
5.3 Temperature profile at the bowl rim
84(1)
5.4 Piston temperature profile
85(1)
5.5 Effects on the function of the piston
86(2)
5.5.1 Thermally induced deformation
86(1)
5.5.2 Temperature-dependent material fatigue data
86(1)
5.5.3 Influence of temperature on the piston rings
87(1)
5.6 Potential influences on the piston temperature
88(1)
5.7 Types of cooling
88(6)
5.7.1 Pistons without piston cooling
88(1)
5.7.2 Pistons with spray jet cooling
88(1)
5.7.3 Pistons with cooling galleries
89(1)
5.7.3.1 Salt core cooling gallery pistons
89(1)
5.7.3.2 Pistons with cooled ring carrier
90(2)
5.7.3.3 Machined cooling galleries
92(1)
5.7.4 Composite pistons with cooling cavities
92(1)
5.7.4.1 Shaker cooling
93(1)
5.7.4.2 Bore cooling
94(1)
5.8 Feeding the cooling oil
94(3)
5.8.1 Jet feeding of cooling oil
95(1)
5.8.1.1 Nozzle designs for spray jet cooling
95(1)
5.8.1.2 Nozzle design for supplying cooling galleries and cooling cavities
96(1)
5.8.2 Feeding via crankshaft and connecting rod
96(1)
5.8.2.1 Feeding via piston pin and piston pin boss
97(1)
5.8.2.2 Feeding via slide shoe
97(1)
5.9 Heat flows in the piston
97(2)
5.10 Determining thermal load
99(1)
5.11 Numerical analysis using FE analysis
99(1)
5.12 Laboratory shaker tests
100(1)
5.13 Characteristic quantities
101(3)
5.14 Test facilities
104(1)
5.15 Simulation of oil motion
105(2)
6 Component testing
107(8)
6.1 Static component testing
108(2)
6.2 Cyclic component testing
110(2)
6.3 Wear testing
112(3)
7 Engine testing
115(166)
7.1 Test run programs with examples of test results
115(11)
7.1.1 Standard test run programs
116(1)
7.1.1.1 Full-load curve
116(1)
7.1.1.2 Blow-by behavior
116(1)
7.1.1.3 Seizure test
116(2)
7.1.1.4 Development test
118(1)
7.1.2 Long-term test run programs
119(1)
7.1.2.1 Standard endurance test
119(1)
7.1.2.2 Cold-warm endurance test
120(1)
7.1.3 Specialized test run programs
121(1)
7.1.3.1 Cold-start test
121(1)
7.1.3.2 Microwelding test
121(1)
7.1.3.3 Fretting test
122(1)
7.1.3.4 Burning mark test
123(3)
7.2 Applied measurement methods for determining the piston temperature
126(15)
7.2.1 Methods for measuring the piston temperature
127(1)
7.2.1.1 Thermomechanical methods for measuring the piston temperature
127(1)
7.2.1.1.1 Use of fusible plugs
127(1)
7.2.1.1.2 Use of templugs
128(1)
7.2.1.2 Thermoelectrical methods for measuring piston temperature
129(1)
7.2.1.2.1 Use of NTC resistors
129(1)
7.2.1.2.2 Use of NiCr-Ni thermocouples
130(1)
7.2.1.3 Transferring the readings from thermocouples
131(1)
7.2.1.3.1 Transferring the readings from thermocouples with measurement leads supported by linkage systems
131(1)
7.2.1.3.2 Transferring the readings from thermocouples using telemetry
132(1)
7.2.1.4 Evaluation of the methods used at MAHLE for measuring piston temperatures
133(1)
7.2.2 Piston temperatures in gasoline and diesel engines
134(1)
7.2.2.1 Typical temperature maxima on the piston
135(1)
7.2.2.2 Influence of various operating parameters on piston temperature
135(3)
7.2.2.3 Influence of cooling oil quantity on the piston temperature
138(1)
7.2.2.4 Piston temperature measurement in transient running programs
139(2)
7.3 Measurement of friction power losses on a fired engine
141(30)
7.3.1 Measurement methods for determining friction losses
142(1)
7.3.1.1 Willans line method
142(1)
7.3.1.2 Motoring and tear down methods
143(1)
7.3.1.3 Cylinder deactivation
143(1)
7.3.1.4 Coast down test
144(1)
7.3.1.5 Floating liner method
144(1)
7.3.1.6 Indication method
145(1)
7.3.2 Friction mapping using the indication method
145(1)
7.3.2.1 Profile of requirements
145(1)
7.3.2.2 Friction power test bench for passenger car engines
146(3)
7.3.2.3 Measurement and analysis method
149(2)
7.3.3 Selected results from tests on a passenger car diesel engine
151(1)
7.3.3.1 Piston installation clearance
152(1)
7.3.3.2 Surface roughness of the piston skirt
153(1)
7.3.3.3 Piston pin offset
154(2)
7.3.3.4 Width of the piston ring in groove 1
156(1)
7.3.3.5 Tangential force of the oil control ring
157(2)
7.3.3.6 Coating of the piston pin
159(1)
7.3.3.7 Engine oil viscosity
159(1)
7.3.3.8 Profile of the piston skirt
160(2)
7.3.3.9 Coating of the piston skirt
162(1)
7.3.3.10 Stiffness of the piston skirt
163(2)
7.3.3.11 Area of the piston skirt
165(2)
7.3.4 Simulation of fuel consumption and CO2 emissions values in the cycle
167(1)
7.3.5 Comparison of results
168(3)
7.4 Wear testing of the piston group
171(16)
7.4.1 Piston skirt
172(1)
7.4.1.1 Skirt collapse and coating wear
172(2)
7.4.1.2 Ovality
174(1)
7.4.2 Piston ring and cylinder surface
175(1)
7.4.2.1 Piston ring running surface
175(1)
7.4.2.2 Coil springs
176(1)
7.4.2.3 Abnormal wear patterns
176(2)
7.4.2.4 Cylinder surface and cylinder polishing
178(2)
7.4.3 Piston ring side face and piston ring groove
180(1)
7.4.3.1 Side faces of the 1st piston ring
180(1)
7.4.3.2 Side faces of the top ring groove
180(2)
7.4.4 Piston pin and piston pin boss
182(1)
7.4.4.1 Piston pin
182(2)
7.4.4.2 Piston pin boss
184(2)
7.4.5 Circlip and circlip groove
186(1)
7.5 Piston loading due to knocking combustion
187(14)
7.5.1 Knock damage and damage evaluation
188(2)
7.5.2 Knock measurement and the MAHLE Kl meter
190(4)
7.5.3 Examples of measurement results
194(2)
7.5.4 Detection quality of knock control systems
196(3)
7.5.5 Mega-knocks and premature ignition
199(2)
7.6 Piston noise and transverse motion
201(25)
7.6.1 Procedure for systematically minimizing piston noise
201(3)
7.6.2 Piston noise in gasoline engines
204(1)
7.6.2.1 Subjective noise assessment
204(1)
7.6.2.2 Objective noise assessment and quantification
205(5)
7.6.2.3 Piston transverse motion and influence parameters in gasoline engines
210(4)
7.6.3 Piston noise in passenger car diesel engines
214(1)
7.6.3.1 Subjective noise assessment
214(5)
7.6.3.2 Objective noise assessment and quantification
219(5)
7.6.3.3 Piston transverse motion and influence parameters in passenger car diesel engines
224(2)
7.7 Piston pin noise
226(11)
7.7.1 Causes of noise
226(1)
7.7.2 Structure-borne noise transfer paths and measurement program
227(2)
7.7.3 Method of analysis in the time domain
229(2)
7.7.4 Results of parameter studies
231(1)
7.7.4.1 Influence of piston pin clearance
231(1)
7.7.4.2 Influence of pin boss geometry
232(1)
7.7.4.2.1 Oil pockets and circumferential oil groove
232(1)
7.7.4.2.2 Transverse oval pin bore and pin bore relief
233(1)
7.7.4.2.3 Single-sided vertical oval pin bore
234(1)
7.7.4.2.4 Shaped pin bore
235(2)
7.8 Cavitation in wet cylinder liners of commercial vehicle diesel engines
237(24)
7.8.1 Basic principles of cavitation
238(1)
7.8.2 The physical phenomenon of cavitation
239(1)
7.8.3 Types of cavitation
240(1)
7.8.3.1 Gas cavitation
240(1)
7.8.3.2 Pseudocavitation
241(1)
7.8.3.3 Vapor cavitation
241(1)
7.8.3.4 Cavitation in real flows
241(1)
7.8.4 Cavitation bubble dynamics and cavitation bubble collapse
241(1)
7.8.4.1 Spherical cavitation bubble implosion
242(1)
7.8.4.2 Aspherical cavitation bubble implosion
242(2)
7.8.5 Cavitation damage in wet cylinder liners
244(2)
7.8.6 Cavitation measurement equipment
246(2)
7.8.7 Cavitation intensity factor and signal analysis
248(1)
7.8.8 Test bench setup for cavitation measurements
249(1)
7.8.9 Test run programs for cavitation measurements
250(1)
7.8.10 Relationship of cavitation intensity to the arrangement of the cylinder and the position on the cylinder
251(1)
7.8.11 Influencing parameters
252(1)
7.8.11.1 Influence of engine operating parameters on cavitation
253(1)
7.8.11.1.1 Influence of engine speed
253(1)
7.8.11.1.2 Influence of engine load
254(1)
7.8.11.1.3 Influence of cooling system pressure
254(1)
7.8.11.1.4 Influence of coolant volume flow rate
255(1)
7.8.11.1.5 Influence of coolant temperature
255(1)
7.8.11.1.6 Influence of coolant composition
256(1)
7.8.11.1.7 Influence of combustion chamber pressure
256(1)
7.8.11.2 Influence of design parameters on cavitation
256(1)
7.8.11.2.1 Influence of piston and cylinder liner installation clearance
257(1)
7.8.11.2.2 Influence of piston type and piston profile
258(2)
7.8.11.2.3 Influence of other piston design characteristics
260(1)
7.8.11.2.4 Influence of design characteristics of the cylinder liner and cooling gallery shape
261(1)
7.9 Lube oil consumption and blow-by in the combustion engine
261(20)
7.9.1 Lube oil consumption mechanisms in the combustion engine
261(3)
7.9.1.1 Lube oil consumption in the frictional system of the piston, piston rings, and cylinder wall
264(1)
7.9.1.2 Lube oil consumption through valve stem seals
265(1)
7.9.1.3 Lube oil consumption through crankcase ventilation (blow-by)
265(1)
7.9.1.4 Lube oil consumption and blow-by in the turbocharger
265(2)
7.9.2 Lube oil consumption measurement methods
267(3)
7.9.3 Lube oil consumption maps and dynamic lube oil consumption
270(4)
7.9.4 Influence of intake manifold vacuum on lube oil consumption in the gasoline engine
274(1)
7.9.5 Trade-off between friction power loss and lube oil consumption using the example of tangential force reduction on the oil control ring of a passenger car diesel engine
275(1)
7.9.5.1 Influence of tangential force on the oil control ring on lube oil emissions
276(1)
7.9.5.2 Comparison of the influence of tangential force on the oil control ring on lube oil emissions and frictional behavior
277(2)
7.9.5.3 Influence of tangential force of the oil control ring on fuel consumption, lube oil emissions, and the CO2 balance in the NEDC
279(2)
References 281(3)
Dictionary/Glossary 284(9)
Keyword index 293
MAHLE is a leading international development partner for the automotive industry. With its products for combustion engines and their peripherals as well as for electric vehicles, the group addresses all the crucial issues connected to the powertrain and air conditioning technology: from engine systems and components to filtration to thermal management.