Atjaunināt sīkdatņu piekrišanu

E-grāmata: Plant Biotechnology: The genetic manipulation of plants

3.70/5 (49 ratings by Goodreads)
(Senior ), (Principal Lecturer in plant molecular biology, Norman Borlaug Institute for Plant Science Research, De Monfort University), (Deputy Director of the Norman Borlaug Institute for Plant Science Research, De Montfort University)
  • Formāts: PDF+DRM
  • Izdošanas datums: 27-Mar-2008
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192646934
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 55,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 27-Mar-2008
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192646934
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Throughout history, humankind has pursued means to improve the yield of crop plants through selective plant breeding and hybridization. Today, genetic manipulation provides a powerful tool for directing plant breeding. But how is genetic manipulation implemented? What benefits can it offer? And what are the broader issues surrounding the use of this technology?

The second edition of Plant Biotechnology: the genetic manipulation of plants presents a balanced, objective exploration of the technology behind genetic manipulation, and the application of this technology to the growth and cultivation of plants. The book describes the techniques underpinning genetic manipulation in a clear, lucid manner, and makes extensive use of case studies to illustrate how this influential tool is used in practice.

Key themes and strategies are developed using appropriate case studies, which place the science behind plant biotechnology in its broader agricultural context.

Online Resource Centre: The Online Resource Centre features the following materials:

For lecturers: BL Figures from the book, available to download

For students: BL Hyperlinks to the primary literature articles cited in the book to facilitate access to original research papers BL Case studies BL News updates - surveys of significant developments in the field help maintain the currency of the resource BL Web links library

Recenzijas

The book describes the techniques underpinning genetic manipulation in a clear, lucid manner, and makes extensive use of case studies to illustrate how this influential tool is used in practise. * CABI *

List of abbreviations
xix
Plant genomes: the organization and expression of plant genes
1(36)
Introduction
1(1)
DNA, chromatin, and chromosome structure
1(5)
Chromatin
4(2)
An introduction to gene structure and gene expression
6(10)
Gene structure and expression in a eukaryotic protein-coding gene
6(4)
Translation
10(6)
Regulation of gene expression
16(6)
Chromatin conformation
16(1)
Gene transcription
16(2)
RNA modification, splicing, turnover, and transport
18(2)
Translation
20(1)
Post-translational modification
21(1)
Localization
21(1)
Protein turnover
21(1)
Conclusions
21(1)
Implications for plant transformation
22(4)
Examples of promoter elements used to drive transgene expression
26(1)
Protein targeting
26(1)
Heterologous promoters
26(1)
Genome size and organization
27(1)
Arabidopsis and the new technologies
28(5)
Genome-sequencing project---technology, findings, and applications
28(3)
Biotechnological implications of the AGI
31(1)
Crop plant genome sequencing
31(2)
Summary
33(1)
Further reading
34(3)
Plant tissue culture
37(17)
Introduction
37(1)
Plant tissue culture
37(7)
Plasticity and totipotency
37(1)
The Culture environment
38(1)
Plant cell culture media
39(2)
Plant growth regulators
41(3)
Culture types
44(4)
Callus
44(1)
Cell-suspension cultures
45(1)
Protoplasts
46(1)
Root cultures
46(1)
Shoot tip and meristem culture
46(1)
Embryo culture
46(1)
Microspore culture
47(1)
Plant regeneration
48(3)
Soatic embryogenesis
48(2)
Cereal regeneration via somatic embryogenesis from immature or matue embryos
50(1)
Organogenesis
51(1)
Integration of plant tissue culture into plant transformation portocols
51(1)
Summary
52(1)
Further reading
53(1)
Techniques for plant transformation
54(23)
Introduction
54(1)
Agrobacterium-mediated gene transfer
54(2)
The biology Agrobacterium
54(2)
The Ti plasmid
56(3)
Ti-plasmid features
56(3)
The process of T-DNA transfer and integration
59(2)
Signal recognition by Agrobacterium
60(1)
Attachment to plant cells
60(1)
Induction of vir genes
60(1)
T-strand production
60(1)
Transfer of T-DNA out of the bacterial cell
60(1)
Transfer of the T-DNA and vir proteins into the plant cell and nuclear localization
60(1)
Practical applications of Agrobacterium-medated plant transformation
61(3)
Agrobacterium-mediated transformation of tobacco
62(2)
Transformation
64(2)
Direct gene-transfer methods
66(8)
Particle bombardment
67(1)
Biolistic transformation of rice
68(4)
Polyethylene glycol-mediated transformation
72(1)
Electroporation
73(1)
Silicon carbide fibres: WHISKERS™
73(1)
Summary
74(1)
Further reading
74(3)
Vectors for plant transformation
77(28)
Introduction
77(1)
Desirable features of any plasmid vector
77(2)
Development of plant transformation vectors
79(1)
Basic features of vectors for plant trasformation
79(13)
Promoters and terminators
79(7)
Selectable markers
86(1)
Reporter genes
87(4)
Origins of repliction
91(1)
Co-integrative and binary vectors
91(1)
Families of binary vectors
91(1)
Optimization
92(8)
Arrangement of genes in the vector
95(3)
Transgene copy number
98(1)
Transgene position
98(1)
Trangene features
98(2)
Clean-gene technology
100(1)
Summary
100(1)
Further reading
101(4)
The genetic manipulation of herbicide tolerance
105(28)
Introduction
105(1)
The use of herbicides in modern agriculture
106(5)
What types of compounds are herbicides?
107(4)
Strategies for engineering herbicide tolerance
111(16)
Glyphosate tolerance
111(10)
Phosphinothricin
121(2)
Prospects for plant detoxification systems
123(1)
Commercialization of herbicide-tolerant plants to date
124(2)
Engineering imidazolinone tolerance by targeted modification of endogenous plant genes
126(1)
The environmental impact of herbicide-tolerant crops
127(3)
The development of super-weeds
129(1)
Summary
130(1)
Further reading
131(2)
The genetic manipulation of pest resistance
133(23)
Introduction
133(1)
The nature and scale of insect pest damage to crops
134(1)
GM strategies for insect resistance: the Bacillus thuringiensis approach
134(6)
The use of B. thuringiensis as a biopesticide
138(1)
Bt-based genetic modification of plants
138(2)
Resistance of Bt maize to the Europen corn borer and other pests
140(6)
The problem of insect resistance to Bt
141(4)
The environmental impact of Bt crops
145(1)
The Copy Nature strategy
146(7)
Cowpea trypsin inhibitor
149(4)
Insect-resistant crops and food safety
153(1)
Summary
153(1)
Further reading
153(3)
Plant disease resistance
156(28)
Introduction
156(1)
Plant-pathogen interactions
157(3)
Prokaryotes
158(1)
Fungi and water moulds
158(2)
Viruses
160(1)
Existing approaches to combating disease
160(2)
Natural disease-resistance pathway: overlap between pests and diseases
162(10)
Anatomical defences
162(1)
Pre-existing protein and chemical protection
162(1)
Inducible systems
163(7)
Systemic responses
170(2)
Biotechnogical approaches to disease resistance
172(9)
Protection aganst pathogens
173(1)
Antimicrobial proteins
174(2)
Transgenic crops for food safety
176(1)
Induction of HR and SAR in transgenic plants
177(1)
The BASF potato
178(1)
Developments for the future
179(1)
Other transgenic approaches
179(1)
Future prospects for breeding
179(1)
Xanthomonas spp.
180(1)
Summary
181(1)
Further reading
182(2)
Reducing the effects of viral disease
184(28)
Introduction
184(1)
Types of plant virus
184(4)
RNA viruses
186(2)
Entry and replication: points of inhibition
188(1)
How has the agricultural community dealt with viruses?
189(3)
Developments in the sugar beet industry
190(2)
The transgenic approach: PDR
192(10)
Interactions involving viral proteins
192(2)
Arabis mosaic virus
194(3)
RNA effects
197(5)
Some non-PDR approaches
202(2)
DNA viruses
203(1)
What has been commercialized in Western agriculture?
204(4)
Yellow squash and zucchini
204(1)
Papaya
205(1)
Potato
205(1)
Risk
206(2)
Summary
208(1)
Further reading
209(3)
Strategies for engineering stress tolerance
212(25)
Introduction
212(2)
The nature of abiotic stress
214(1)
The nature of water-deficit stress
214(8)
Different abiotic stresses create a water deficit
215(3)
Glycine betaine production
218(4)
Targeted approaches to manipulating tolerance to specific water-deficit stresses
222(7)
Alternative approaches to salt stress
222(1)
Na+./H+ antiporters improve salt tolerance in transgenic plants
223(1)
Alternative approaches to cold stress
224(1)
The COR regulon
224(4)
Tolerance to heat stress
228(1)
Secondary effects of abiotic stress: the production of ROS
229(5)
Strategy 1: Expression of enzymes involved in scavenging ROS
232(2)
Strategy 2: Production of antioxidants
234(1)
Summary
234(1)
Further reading
234(3)
The improvement of crop yield and quality
237(30)
Introduction
237(1)
The genetic manipulation of fruit ripening
238(18)
The genetic manipulation of fruit softening
240(3)
The genetic modification of ethylene biosynthesis
243(4)
Modification of colour
247(4)
Golden Rice
251(5)
Engineering plant protein composition for improved nutrition
256(2)
The genetic manipulation of crop cield by enhancement of photosynthesis
258(5)
Manipulation of light harvesting and the assimilate distribution: phytochromes
258(3)
Direct manipulation of photosynthesis: enhancement of dark reactions
261(2)
Summary
263(1)
Further reading
263(4)
Molecular farming
267(49)
Introduction
267(1)
Carbohydrates and lipids
267(18)
Carbohydrate production
267(1)
Starch
268(4)
Polyfructans
272(4)
Metabolic engineering of lipids
276(6)
Bioplastics
282(3)
Molecular farming of proteins
285(22)
Production systems
286(3)
The oleosin system: hirudin and insulin production
289(7)
Medically related proteins
296(4)
Custom-made antibodies
300(4)
Edible vaccines
304(3)
Economic and regulatory considerations for molecular farming
307(4)
Summary
311(1)
Further reading
312(4)
Science and society: public acceptance of genetically modified crops
316(27)
Introduction
316(1)
Public concerns
316(2)
The current state transgenic crops
318(5)
Who has benefited from these first-generation GM crops
322(1)
Concerns about GM crops
323(8)
Antibiotic-resistance genes
323(1)
Herbicide resistance and super-weeds
324(1)
Gene containment
325(3)
Big business
328(2)
Food safety
330(1)
The regulation of GM crops and products
331(9)
The EU
331(7)
The USA
338(2)
Summary
340(1)
Further reading
340(3)
Beyond genetically modified crops
343(24)
Introduction
343(1)
`Greener' genetic engineering
343(2)
Genetic manipulation of complex agronomic traits
345(3)
Identification of genes associated with desirable trits
348(6)
Genetic mapping
348(4)
Quantiative trait loci
352(2)
Investigating gene function by reverse genetics
354(3)
Insertional mutagenesis
354(1)
TILLING
355(2)
Understanding gene functon within the genomic context: functional genomics
357(6)
Transcriptomics
357(3)
Proteomics
360(2)
Interactomics
362(1)
Metabolomics
362(1)
Systems biology
362(1)
Summary
363(1)
Further reading
363(4)
Index 367
Adrian Slater is the Deputy Director of the Norman Borlaug Institute for Plant Science Research at De Montfort University, UK



Nigel Scott is a principal lecturer in plant molecular biology in the Norman Borlaug Institute for Plant Science Research at De Montfort University, UK





Mark Fowler is a senior lecturer in plant molecular biology in the Norman Borlaug Institute for Plant Science Research at De Montfort University, UK