Atjaunināt sīkdatņu piekrišanu

E-grāmata: Plant Disease Forecasting Systems: Procedure, Application and Prospect

  • Formāts: PDF+DRM
  • Izdošanas datums: 10-May-2023
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819912100
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 10-May-2023
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819912100

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book focus on creating popularity and interest in modeling, derivation of equations for plant disease forecasting or construction and use of Web-based Expert Systems among plant pathologists. This book covers descriptions of many historic plant disease epidemics, various forecasting systems and methods of their construction, instruments required for study of plant disease epidemics, widely used commercial forecasting systems and present global scenario of forecasting.

In the human history plant disease epidemics have brought unsurmountable misery many a times. Still breaking out of epidemic in any time in any part of the world is a stark reality. The panic spraying of chemical pesticides is not a panacea. Only the IPM technology may give relief. This technology if backed by the disease forewarning system may yield the desired results. Hence, an in depth understanding of plant disease forecasting system and its successful implementation may bring the global food security. 





This title provides a useful background for all students, practitioners, and researchers interested in the field of epidemiology, food security and agriculture sciences. 









 
1. Historic Plant Disease Epidemics.- 
2. Epidemic Factors.- 
3.
Predicting Variables. 4.Criteria to Develop Forecast.-
5. Modeling of
Epidemic Dynamic.-
6. Decision Support Systems (DSSs).-
7. Expert System.-
8.
Geographic Information Systems: Web-Based Disease Forecasting.-
9. Decision
Support Systems and Expert Systems: A Comparison.-
10. Forecasting in Changed
Climate.-
11. Disease Detection: Imaging Technology and Remote Sensing.-
12.
Classical Disease Forecasting Systems.
Dr. D. K.  Chakrabarti graduated (Plant Pathology.) from West Bengal. He was the Prof. at ND Agri. Univ., Uttar Pradesh. Currently he is the Visiting Prof. in B. C. Agri. Univ., W. Bengal.  He received 9 National /Professional Society Awards including Indian National Sci. Acad. Young Sci. Medal (1980), Kothari Research Award (1980), Indian Sci. Cong. Young Sci. Award (1982), U.P. (Govt.) Best Agri Sci. Award (2001).





    Dr. Prabhat Mittal is a Professor in the Department of Commerce & Management, Satyawati College, Delhi University. He did Ph.D. from the Faculty of Management Studies (FMS), University of Delhi, and has published many research articles in the fields of supply chain management, quantitative finance, and big data analytics.