Atjaunināt sīkdatņu piekrišanu

E-grāmata: Plasma Formulary for Physics, Astronomy and Technology 2e 2nd Edition [Wiley Online]

(University of Glasgow, Department of Physics and Astronomy, GB)
  • Formāts: 232 pages
  • Izdošanas datums: 20-Feb-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527653252
  • ISBN-13: 9783527653256
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 117,13 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 232 pages
  • Izdošanas datums: 20-Feb-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527653252
  • ISBN-13: 9783527653256
Citas grāmatas par šo tēmu:
This collection of fundamental formulae, up-to-date references and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.

Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings, with extended coverage of fusion plasma, plasma in stellar winds, reaction rates, engineering plasma and many other topics.

The text is also unique in treating astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline.
Preface to the Second Edition xiii
Preface to the First Edition xv
1 Basic Physical Data
1(24)
1.1 Basic Physical Units
1(1)
1.1.1 SI Units
1(1)
1.1.2 cgs-Gaussian Units
2(1)
1.2 Maxwell's Electromagnetic Equations
2(1)
1.3 Special Relativity
3(1)
1.4 Physical Constants
4(1)
1.5 Dimensional Analysis
5(1)
1.6 Ionization Energies of Gas-Phase Atoms and Molecules
6(2)
1.7 Electron Affinities of Selected Atoms and Molecules
8(1)
1.8 Atomic and Molecular Notation
9(8)
1.8.1 Atomic Electron Configurations
9(1)
1.8.1.1 Principal Quantum Number, n
10(1)
1.8.1.2 Azimuthal Quantum Number, l
10(1)
1.8.1.3 Magnetic Quantum Number, ml
11(1)
1.8.1.4 Spin Quantum Number, ms
11(1)
1.8.1.5 Multielectron Atoms
12(1)
1.8.1.6 Selection Rules for Transitions
13(1)
1.8.1.7 Emission and Absorption
13(1)
1.8.2 Molecular Electron Configurations
13(1)
1.8.2.1 Born--Oppenheimer Approximation
14(1)
1.8.2.2 A Quantum Number
14(1)
1.8.2.3 Spin Quantum Number
14(1)
1.8.2.4 Molecular Term Notation
14(1)
1.8.2.5 Symmetry
15(1)
1.8.2.6 Selection Rules for Transitions
15(2)
1.9 Characteristic Parameters for Typical Plasmas
17(8)
1.9.1 Laboratory Plasma Reactors
17(1)
1.9.1.1 Corona Discharge
17(1)
1.9.1.2 Dielectric Barrier Discharge
17(1)
1.9.1.3 GEC Reference Cell
18(1)
1.9.1.4 Hollow Cathode Discharge
18(1)
1.9.1.5 Tokamak
19(2)
1.9.2 Terrestrial and Solar Plasmas
21(4)
2 Basic Plasma Parameters
25(10)
2.1 Notation
25(1)
2.2 Natural Timescales
26(2)
2.2.1 Characteristic Frequencies
26(1)
2.2.1.1 Plasma Frequency
26(1)
2.2.1.2 Cyclotron Frequency
27(1)
2.2.1.3 Collision Frequency
27(1)
2.2.2 Characteristic Times
27(1)
2.2.2.1 Alfven Transit Time
27(1)
2.2.2.2 Collision Time
27(1)
2.2.2.3 Resistive Timescale
28(1)
2.3 Natural Scale Lengths
28(1)
2.3.1 Debye Length
28(1)
2.3.2 Mean Free Path
28(1)
2.3.3 Plasma Skin Depth
29(1)
2.3.4 Larmor Radius
29(1)
2.4 Natural Speeds
29(1)
2.4.1 Alfven Speed
29(1)
2.4.2 Sound Speed
30(1)
2.5 Miscellaneous Parameters
30(2)
2.5.1 Collision Cross-Section
30(1)
2.5.2 Differential Scattering Cross-Section
30(1)
2.5.3 Magnetic Moment
31(1)
2.5.4 Mobility
31(1)
2.6 Nondimensional Parameters
32(2)
2.6.1 Dielectric Constant
32(1)
2.6.2 Hartmann Number
32(1)
2.6.3 Knudsen Number
32(1)
2.6.4 Lundquist Number
33(1)
2.6.5 Mach Number
33(1)
2.6.6 Magnetic Reynolds Number
33(1)
2.6.7 Plasma Beta
33(1)
2.7 Parameter Relationships
34(1)
3 Discharge Plasmas and Elementary Processes
35(18)
3.1 Notation
35(1)
3.2 Plasma Sheath
36(3)
3.2.1 Planar Sheath Equation
36(1)
3.2.1.1 Bohm Sheath Criterion
37(1)
3.2.2 Child--Langmuir Law
37(1)
3.2.3 Collisional Sheaths
38(1)
3.3 Double Layer
39(1)
3.4 Diffusion Parameters
40(3)
3.4.1 Free Diffusion
40(1)
3.4.2 Mobility
41(1)
3.4.3 Ambipolar Diffusion
41(1)
3.4.3.1 Restrictions
42(1)
3.4.4 Ambipolar Diffusion in a Magnetic Field
43(1)
3.4.4.1 Restrictions
43(1)
3.5 Ionization
43(7)
3.5.1 Townsend Breakdown
43(1)
3.5.1.1 Townsend's First Ionization Coefficient
43(2)
3.5.1.2 Stoletow Point
45(1)
3.5.1.3 Restrictions
46(1)
3.5.2 Alfven Ionization
46(2)
3.5.3 Secondary Electron Emission
48(1)
3.5.3.1 Townsend's Second Ionization Coefficient
48(1)
3.5.3.2 Effect of Electron Attachment
48(1)
3.5.3.3 Generalized Treatment of Secondary Processes
49(1)
3.5.4 Townsend Breakdown Criterion
49(1)
3.5.5 Paschen Curve
49(1)
3.6 Ionization Equilibrium
50(3)
3.6.1 Local Thermodynamic Equilibrium
50(1)
3.6.2 Saha Equation
51(2)
4 Radiation
53(20)
4.1 Notation
53(1)
4.2 Radiation from a Moving Point Charge
54(6)
4.2.1 Lienard--Wiechert Potentials
54(1)
4.2.2 Electric and Magnetic Fields of a Moving Charge
55(1)
4.2.3 Power Radiated by an Accelerating Point Charge
56(1)
4.2.3.1 Nonrelativistic
56(1)
4.2.3.2 Relativistic, βv, βv Collinear
57(1)
4.2.3.3 Relativistic, βv, βv Orthogonal
57(2)
4.2.3.4 Relativistic, βv, βv General
59(1)
4.2.4 Frequency Spectrum of Radiation from an Accelerating Charge
59(1)
4.3 Cyclotron and Synchrotron Radiation
60(4)
4.3.1 Spectral Power Density
61(1)
4.3.2 Power in Each Harmonic
62(1)
4.3.3 Total Radiated Power
62(1)
4.3.4 βv, << 1: Cyclotron Emission
63(1)
4.3.5 βv, ~ 1: Synchrotron Emission
63(1)
4.4 Bremsstrahlung
64(1)
4.5 Radiation Scattering
64(9)
4.5.1 Thomson Scattering
65(1)
4.5.1.1 Thomson Scattering Cross-Section for Single Electron
66(2)
4.5.2 Incoherent Thomson Scattering from an Unmagnetized Plasma
68(1)
4.5.2.1 Nonrelativistic Plasma, κλD >> 1
68(1)
4.5.2.2 Relativistic Plasma, κλD >> 1
68(1)
4.5.3 Coherent Thomson Scattering from an Unmagnetized Plasma
69(1)
4.5.4 Compton Scattering
70(1)
4.5.5 Klein--Nishina Cross-Section
71(2)
5 Kinetic Theory
73(16)
5.1 Notation
73(1)
5.2 Fundamentals
74(1)
5.3 Boltzmann Equation
75(1)
5.4 Maxwellian Distribution
75(2)
5.4.1 Restrictions on the Maxwellian Distribution
76(1)
5.5 Relativistic Maxwellian
77(2)
5.6 Vlasov Description
79(2)
5.6.1 Equilibrium Solutions
80(1)
5.6.1.1 Case I: E = B = 0
80(1)
5.6.1.2 Case II: E = 0, B = zB0(r)
80(1)
5.6.1.3 Case III: E = -x∂φ(x)/∂x, B = 0
81(1)
5.6.1.4 Stability of Metaequilibria
81(1)
5.7 Collisional Modeling
81(2)
5.7.1 Boltzmann Collision Term
81(1)
5.7.1.1 Restrictions
81(1)
5.7.2 Simplified Boltzmann Collision Term
82(1)
5.7.2.1 Restrictions
82(1)
5.7.3 Fokker--Planck
82(1)
5.7.4 Fokker--Planck Potentials
83(1)
5.7.4.1 Restrictions
83(1)
5.8 Driven Systems
83(6)
5.8.1 Generalized Distribution
83(1)
5.8.1.1 Thermal Motion Dominant: Maxwellian Distribution
84(1)
5.8.1.2 Thermal Motion Negligible: Druyvesteyn Distribution
85(1)
5.8.1.3 Harmonic E, Thermal Motion Negligible: Amended Druyvesteyn
85(1)
5.8.1.4 High Frequency Limit
85(2)
5.8.1.5 General Form
87(1)
5.8.1.6 Restrictions
87(2)
6 Plasma Transport
89(18)
6.1 Notation
89(1)
6.2 Basic Definitions
90(1)
6.3 Binary Collisions
90(4)
6.3.1 Elastic Collisions Between Charged Particles
90(1)
6.3.1.1 Binary Coulomb Collision
90(1)
6.3.1.2 Multiple Coulomb Collisions
91(1)
6.3.1.3 Relaxation Times for Maxwellian Distributions
92(2)
6.4 Particle Dynamics
94(5)
6.4.1 Drifts
95(1)
6.4.1.1 Constant E, B
95(1)
6.4.1.2 Nonuniform E, Uniform B
95(1)
6.4.1.3 Nonuniform B, E = 0: Grad B Drift
95(1)
6.4.1.4 Nonuniform B, E = 0: Curvature Drift
96(1)
6.4.1.5 External Force Drift
96(1)
6.4.1.6 Restrictions
96(1)
6.4.1.7 Uniform B, Nonuniform Density: Diamagnetic Drift
96(1)
6.4.1.8 Motion in a Monochromatic Plane Wave
97(1)
6.4.2 Adiabatic Invariants
97(1)
6.4.2.1 Magnetic Moment
97(1)
6.4.2.2 Longitudinal Invariant
97(1)
6.4.3 Magnetic Mirror
98(1)
6.5 Transport Coefficients
99(8)
6.5.1 Fully Ionized Plasma, Zero Magnetic Field, Krook Operator
99(1)
6.5.2 Lorentzian and Spitzer Conductivity
99(1)
6.5.2.1 Lorentz Conductivity
99(1)
6.5.2.2 Spitzer Conductivity
100(1)
6.5.3 Fully Ionized and Magnetized Plasma: Braginskii Coefficients
101(1)
6.5.3.1 Momentum Transfer from Ions to Electrons
102(1)
6.5.3.2 Electron Heat Flux
103(1)
6.5.3.3 Ion Heat Flux
103(1)
6.5.3.4 Resistivity
104(1)
6.5.4 Corrections to Braginskii Coefficients
104(1)
6.5.5 Equal Mass Plasma Transport
104(3)
7 Plasma Waves
107(22)
7.1 Notation
107(1)
7.2 Waves in Cold Plasmas
108(9)
7.2.1 Model Equations
108(1)
7.2.2 Cold Plasma Variable Dependencies
109(1)
7.2.3 Dielectric Tensor for a Cold Magnetized Plasma
110(1)
7.2.4 General Dispersion Relation
110(1)
7.2.4.1 Parallel Propagation
111(3)
7.2.4.2 Resonances and Cut-offs: Parallel Propagation
114(1)
7.2.4.3 Perpendicular Propagation
115(1)
7.2.4.4 Resonances and Cut-offs: Perpendicular Propagation
116(1)
7.2.4.5 Fast Alfven Wave
116(1)
7.2.5 Equal-mass Cold Plasmas
116(1)
7.3 Fluid Plasmas
117(5)
7.3.1 Hydromagnetic Equations
117(1)
7.3.2 Single Fluid MHD Plasma
118(2)
7.3.3 Variable Dependencies in Ideal MHD
120(1)
7.3.4 General Dispersion Relation: Ideal MHD
120(1)
7.3.4.1 Alfven Wave
121(1)
7.3.4.2 Magnetosonic Modes
121(1)
7.4 Waves in Hot Plasmas
122(7)
7.4.1 Dielectric Function for an Unmagnetized Plasma
122(1)
7.4.2 Langmuir Waves
123(1)
7.4.3 Ion-Acoustic Waves
123(1)
7.4.4 Dielectric Tensor for a Hot Plasma
124(2)
7.4.4.1 Parallel Propagation
126(1)
7.4.4.2 Perpendicular Propagation
127(2)
8 Flows
129(26)
8.1 Notation
129(1)
8.2 Fundamental Results
130(1)
8.2.1 Alfven's Theorem
130(1)
8.2.2 Cowling's Antidynamo Theorem
130(1)
8.2.3 Ferraro's Law of Isorotation
130(1)
8.2.4 Kelvin's Vorticity Theorem
131(1)
8.3 Hydromagnetic Flows
131(5)
8.3.1 Hartmann Flow
132(2)
8.3.2 Couette Flow
134(1)
8.3.3 Field-aligned Flows
135(1)
8.3.3.1 η, λ Constant
136(1)
8.3.3.2 η = 0
136(1)
8.3.3.3 Inviscid Flows
136(1)
8.4 Solar Wind
136(2)
8.5 Neutral Gas/Magnetized Plasma Flows
138(1)
8.6 Beams
139(6)
8.6.1 Beam Parameters
140(1)
8.6.1.1 Relativistic Factors
140(1)
8.6.1.2 Budker Parameter
140(1)
8.6.1.3 Neutralization
140(1)
8.6.1.4 Alfven Current
141(1)
8.6.1.5 Generalized Perveance
142(1)
8.6.2 Special Cases
142(1)
8.6.2.1 Cylindrical Beam with Zero Applied Magnetic Field
142(1)
8.6.2.2 Cylindrical Beam in Infinite Magnetic Field
143(2)
8.7 Hydromagnetic Shocks
145(8)
8.7.1 Further Notation
146(1)
8.7.2 Shock Classification
147(1)
8.7.3 Shock Propagation Parallel to B1
148(1)
8.7.3.1 Fast Pure Gas Shock (FM1)
148(1)
8.7.3.2 Switch-on Shock (FM2)
149(1)
8.7.3.3 Switch-on Shock (SM2)
149(1)
8.7.4 Shock Propagation Perpendicular to B1
149(1)
8.7.4.1 Perpendicular Shock (FM1)
150(1)
8.7.4.2 Contact Discontinuity
150(1)
8.7.5 General Case: Fast Magnetic Shocks
151(1)
8.7.6 General Case: Slow Magnetic Shocks
152(1)
8.7.7 Further Reading
152(1)
8.8 Ion-Acoustic Shock
153(2)
9 Equilibria and Instabilities
155(22)
9.1 Notation
155(1)
9.2 General Considerations
156(1)
9.3 Fluid Equilibria
157(5)
9.3.1 Ideal MHD
157(1)
9.3.1.1 Uniform B0
157(1)
9.3.1.2 General Case
157(1)
9.3.1.3 Force-Free Equilibrium
158(1)
9.3.1.4 Taylor Equilibria
158(1)
9.3.2 Cylindrical Equilibria
158(1)
9.3.2.1 Bennett Relation
158(1)
9.3.2.2 Plasma Column Resonances
159(1)
9.3.2.3 Surface Waves on a Plasma Cylinder
160(2)
9.4 Fluid Instabilities
162(11)
9.4.1 Firehose Instability
161(1)
9.4.2 Gravitational Instability
162(2)
9.4.3 Kelvin-Helmholtz Instability
164(1)
9.4.4 Cylindrical Pinch Instabilities
164(1)
9.4.4.1 Sausage Instability: m = 0
165(1)
9.4.4.2 Kink Instability: m ≠ 0
166(1)
9.4.5 Generalized Pinch Instabilities
166(1)
9.4.5.1 Energy Principle
167(2)
9.4.5.2 Suydam Criterion
169(1)
9.4.5.3 Mercier Criterion
169(1)
9.4.6 Resistive Drift Wave Instability
169(1)
9.4.7 MHD Resistive Wall Instability
170(1)
9.4.8 MHD Resistive Tearing Mode
171(1)
9.4.9 Streaming Instability
172(1)
9.5 Kinetic Instabilities
173(4)
9.5.1 Bump-in-tail Instability
173(1)
9.5.2 Electron Runaway
174(1)
9.5.3 Ion-acoustic Instability
174(3)
10 Mathematics
177(20)
10.1 Vector Algebra
177(1)
10.2 Vector Calculus
178(5)
10.2.1 Cartesian Coordinates
178(1)
10.2.2 Cylindrical Coordinates
179(2)
10.2.3 Spherical Coordinates
181(2)
10.3 Integral Theorems
183(1)
10.3.1 Stokes' Theorems
183(1)
10.3.2 Gauss' Theorems
183(1)
10.3.3 Green's Theorems
184(1)
10.4 Matrices
184(4)
10.4.1 Matrix Transpose
184(1)
10.4.2 Complex Conjugate
184(1)
10.4.3 Symmetric
185(1)
10.4.4 Orthogonal
185(1)
10.4.5 Nilpotent
185(1)
10.4.6 Idempotent
185(1)
10.4.7 Triangular
185(1)
10.4.8 Trace
186(1)
10.4.9 Determinant and Inverse
186(1)
10.4.10 Partitioned Matrices
186(1)
10.4.11 Eigenvalues and Eigenvectors
187(1)
10.4.12 Hermitian Matrix
187(1)
10.4.13 Unitary Matrix
188(1)
10.5 Eigenfunctions of the Curl Operator
188(1)
10.6 Wave Scattering
189(5)
10.6.1 Simple Constant Barrier
189(2)
10.6.2 Phase Integral Method
191(1)
10.6.3 Mode Conversion
192(2)
10.7 Plasma Dispersion Function
194(3)
Appendix Guide to Notation 197(4)
List of Figures 201(2)
List of Tables 203(2)
References 205(4)
Index 209
Professor Declan Diver serves as administrative head of the Astronomy & Astrophysics department of the university of Glasgow. His research focuses on the analysis of plasmas, with particular emphasis on low-temperature gas-plasma mixtures, and high energy pair plasmas in a pulsar environment. He also has a strong lecturing record, teaching courses on spherical trigonometry and positional astronomy, stellar evolution, special and general relativity, cosmology and plasma physics.