Atjaunināt sīkdatņu piekrišanu

E-grāmata: Pleasures of Probability

4.27/5 (23 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Sērija : Readings in Mathematics
  • Izdošanas datums: 11-Nov-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461208198
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Readings in Mathematics
  • Izdošanas datums: 11-Nov-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461208198

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The ideas of probability are all around us. Lotteries, casino gambling, the al­ most non-stop polling which seems to mold public policy more and more­ these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re­ moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac­ ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairly decent mathematical background in elementary algebra to this world of probabil­ ity, to the way of thinking typical of probability, and the kinds of problems to which probability can be applied. I have used examples from a wide variety of fields to motivate the discussion of concepts.

This introduction to fundamental ideas in classical probability is written for an audience ranging from mathematical amateurs to scientists, from students to professional mathematicians. Includes illustrative problems, with answers at the end of the book.

Papildus informācija

Springer Book Archives
1: Cars, Goats, and Sample Spaces. 2: How to Count: Birthdays and
Lotteries. 3: Conditional Probability: From Kings to Prisoners. 4: The
Formula of Thomas Bayes and Other Matters. 5: The Idea of
Independence, with Applications. 6: A Little Bit About Games. 7:
Random Variables, Expectations, and More About Games. 8: Baseball
Cards, The Law of Large Numbers, and Bad News for Gamblers. 9: From
Traffic to Chocolate Chip Cookies with the Poisson Distribution. 10:
The Desperate Case of the Gambler's Ruin. 11: Breaking Sticks, Tossing
Needles, and More: Probability on Continuous Sample Spaces. 12: Normal
Distribution, and Order from Diversity via the Central Limit Theorem.
13: Random Numbers: What They Are and How to Use Them. 14: Computers
and Probability. 15: Statistics: Applying Probability to Make
Decisions. 16: Roaming the Number Line with a Markov Chain:
Dependence. 17: The Brownian Motion, and Other Processes in Continuous
Time.