Atjaunināt sīkdatņu piekrišanu

Poincare-Einstein Holography for Forms via Conformal Geometry in the Bulk [Mīkstie vāki]

  • Formāts: Paperback / softback, 85 pages, height x width: 254x178 mm, weight: 172 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-May-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470410923
  • ISBN-13: 9781470410926
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 93,73 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 85 pages, height x width: 254x178 mm, weight: 172 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-May-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470410923
  • ISBN-13: 9781470410926
Citas grāmatas par šo tēmu:
The authors study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. They solve these Laplace-type boundary problems formally, and to all orders, by constructing an operator which projects arbitrary forms to solutions. They also develop a product formula for solving these asymptotic problems in general. The central tools of their approach are (i) the conformal geometry of differential forms and the associated exterior tractor calculus, and (ii) a generalised notion of scale which encodes the connection between the underlying geometry and its boundary. The latter also controls the breaking of conformal invariance in a very strict way by coupling conformally invariant equations to the scale tractor associated with the generalised scale.
Introduction
Bulk conformal geometry and extension problems
Tractor exterior calculus
The exterior calculus of scale
Higher form Proca equations
Obstructions, detours, gauge operators and $Q$-curvature
Appendx A. The ambient manifold
Appendix B. List of common symbols
Bibliography
A. Rod Gover, University of Auckland, New Zealand.

Emanuele Latini, Laboratori Nazinali di Frascati LNF, Italy.

Andrew Waldron, University of California, Davis, CA, USA.