Atjaunināt sīkdatņu piekrišanu

E-grāmata: Polarized Light

(Polaris Sensor Technologies, Inc., Huntsville, Alabama, USA)
  • Formāts: 808 pages
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781439830413
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 181,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 808 pages
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781439830413
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Polarized light is a pervasive influence in our worldand scientists and engineers in a variety of fields require the tools to understand, measure, and apply it to their advantage. Offering an in-depth examination of the subject and a description of its applications, Polarized Light, Third Edition serves as a comprehensive self-study tool complete with an extensive mathematical analysis of the Mueller matrix and coverage of Maxwells equations.

Links Historical Developments to Current Applications and Future Innovations

This book starts with a general description of light and continues with a complete exploration of polarized light, including how it is produced and its practical applications. The author incorporates basic topics, such as polarization by refraction and reflection, polarization elements, anisotropic materials, polarization formalisms (MuellerStokes and Jones) and associated mathematics, and polarimetry, or the science of polarization measurement.

New to the Third Edition:











A new introductory chapter





Chapters on: polarized light in nature, and form birefringence





A review of the history of polarized light, and a chapter on the interference laws of Fresnel and Aragoboth completely re-written





A new appendix on conventions used in polarized light





New graphics, and black-and-white photos and color plates

Divided into four parts, this book covers the fundamental concepts and theoretical framework of polarized light. Next, it thoroughly explores the science of polarimetry, followed by discussion of polarized light applications. The author concludes by discussing how our polarized light framework is applied to physics concepts, such as accelerating charges and quantum systems.

Building on the solid foundation of the first two editions, this book reorganizes and updates existing material on fundamentals, theory, polarimetry, and applications. It adds new chapters, graphics, and color photos, as well as a new appendix on conventions used in polarized light. As a result, the author has re-established this books lofty status in the pantheon of literature on this important field.
Preface to the Third Edition xv
Polarized Light: A History xvii
PART I Introduction to Polarized Light
Chapter 1 Introduction
3(6)
Reference
7(2)
Chapter 2 Polarization in the Natural Environment
9(22)
2.1 Sources of Polarized Light
9(1)
2.2 Polarized Light in the Atmosphere
9(7)
2.2.1 The Sky: Rayleigh Scattering and Polarization
9(1)
2.2.2 Rainbows
10(4)
2.2.3 Clouds, Halos, and Glories
14(1)
2.2.3.1 Clouds
14(1)
2.2.3.2 Haloes
14(1)
2.2.3.3 Glories
15(1)
2.2.4 The Sun
15(1)
2.3 Production of Polarized Light by Animals
16(8)
2.3.1 Scarabaeidae (Scarab Beetles)
16(6)
2.3.2 Squid and Cuttlefish
22(1)
2.3.3 Mantis Shrimp
23(1)
2.4 Polarization Vision in the Animal Kingdom
24(7)
References
28(3)
Chapter 3 Wave Equation in Classical Optics
31(18)
3.1 Introduction
31(1)
3.2 The Wave Equation
31(8)
3.2.1 Plane-Wave Solution
33(1)
3.2.2 Spherical Waves
34(1)
3.2.3 Fourier Transform Method
35(1)
3.2.4 Mathematical Representation of the Harmonic Oscillator Equation
36(2)
3.2.5 Note on the Equation of a Plane
38(1)
3.3 Young's Interference Experiment
39(4)
3.4 Reflection and Transmission of a Wave at an Interface
43(6)
Chapter 4 The Polarization Ellipse
49(10)
4.1 Introduction
49(1)
4.2 The Instantaneous Optical Field and the Polarization Ellipse
50(2)
4.3 Specialized (Degenerate) Forms of the Polarization Ellipse
52(2)
4.4 Elliptical Parameters of the Polarization Ellipse
54(5)
References
58(1)
Chapter 5 Stokes Polarization Parameters
59(34)
5.1 Introduction
59(1)
5.2 Derivation of Stokes Polarization Parameters
60(5)
5.2.1 Linear Horizontally Polarized Light (LHP)
63(1)
5.2.2 Linear Vertically Polarized Light (LVP)
64(1)
5.2.3 Linear +45° Polarized Light (L+45)
64(1)
5.2.4 Linear -45° Polarized Light (L-45)
64(1)
5.2.5 Right Circularly Polarized Light (RCP)
64(1)
5.2.6 Left Circularly Polarized Light (LCP)
65(1)
5.3 Stokes Vector
65(6)
5.3.1 Linear Horizontally Polarized Light (LHP)
66(1)
5.3.2 Linear Vertically Polarized Light (LVP)
66(1)
5.3.3 Linear +45° Polarized Light (L+45)
66(1)
5.3.4 Linear -45° Polarized Light (L-45)
66(1)
5.3.5 Right Circularly Polarized Light (RCP)
66(1)
5.3.6 Left Circularly Polarized Light (LCP)
67(4)
5.4 Classical Measurement of Stokes Polarization Parameters
71(4)
5.5 Stokes Parameters for Unpolarized and Partially Polarized Light
75(2)
5.6 Additional Properties of Stokes Polarization Parameters
77(10)
5.7 Stokes Parameters and the Coherency Matrix
87(3)
5.8 Stokes Parameters and the Pauli Matrices
90(3)
References
91(2)
Chapter 6 Mueller Matrices for Polarizing Components
93(24)
6.1 Introduction
93(2)
6.2 Mueller Matrix of a Linear Diattenuator (Polarizer)
95(5)
6.3 Mueller Matrix of a Linear Retarder
100(3)
6.4 Mueller Matrices of a Rotator
103(2)
6.5 Mueller Matrices for Rotated Polarizing Components
105(6)
6.6 Generation of Elliptically Polarized Light
111(3)
6.7 Mueller Matrix of a Depolarizer
114(3)
References
115(2)
Chapter 7 Fresnel Equations: Derivation and Mueller Matrix Formulation
117(32)
7.1 Introduction
117(1)
7.2 Fresnel Equations for Reflection and Transmission
117(10)
7.2.1 Definitions
117(1)
7.2.2 Boundary Conditions
118(1)
7.2.3 Derivation of Fresnel Equations
119(8)
7.3 Mueller Matrices for Reflection and Transmission at an Air-Dielectric Interface
127(8)
7.4 Special Forms for Mueller Matrices for Reflection and Transmission
135(10)
7.4.1 Normal Incidence
136(1)
7.4.2 Brewster Angle
137(1)
7.4.3 45° Incidence
138(3)
7.4.4 Total Internal Reflection
141(4)
7.5 Emission Polarization
145(4)
References
147(2)
Chapter 8 Mathematics of the Mueller Matrix
149(28)
8.1 Introduction
149(1)
8.2 Constraints on the Mueller Matrix
150(1)
8.3 Eigenvector and Eigenvalue Analysis
151(4)
8.4 Example Eigenvector Analysis
155(5)
8.4.1 Eigenvector Analysis
156(1)
8.4.2 Noise
157(3)
8.5 The Lu-Chipman Decomposition
160(10)
8.6 Decomposition Order
170(1)
8.7 Decomposition of Depolarizing Matrices with Depolarization Symmetry
171(3)
8.8 Decomposition Using Matrix Roots
174(1)
8.9 Summary
174(3)
References
174(3)
Chapter 9 Mueller Matrices for Dielectric Plates
177(24)
9.1 Introduction
177(1)
9.2 The Diagonal Mueller Matrix and the ABCD Polarization Matrix
177(9)
9.3 Mueller Matrices for Single and Multiple Dielectric Plates
186(15)
References
199(2)
Chapter 10 The Jones Matrix Formalism
201(32)
10.1 Introduction
201(1)
10.2 The Jones Vector
202(4)
10.3 Jones Matrices for the Polarizer, Retarder, and Rotator
206(5)
10.4 Applications of the Jones Vector and Jones Matrices
211(11)
10.5 Jones Matrices for Homogeneous Elliptical Polarizers and Retarders
222(11)
References
230(3)
Chapter 11 The Poincare Sphere
233(34)
11.1 Introduction
233(1)
11.2 Theory of the Poincare Sphere
234(16)
11.2.1 Note on the Derivation of Law of Cosines and Law of Sines in Spherical Trigonometry
244(6)
11.3 Projection of the Complex Plane onto a Sphere
250(8)
11.4 Applications of the Poincare Sphere
258(9)
References
266(1)
Chapter 12 Fresnel-Arago Interference Laws
267(14)
12.1 Introduction
267(1)
12.2 Stokes Vector and Unpolarized Light
267(1)
12.3 Young's Double Slit Experiment
268(3)
12.4 Double Slit with Parallel Polarizers: The First Law
271(2)
12.5 Double Slit with Perpendicular Polarizers: The Second Law
273(1)
12.6 Double Slit and the Third Law
274(2)
12.7 Double Slit and the Fourth Law
276(5)
References
278(3)
PART II Polarimetry
Chapter 13 Introduction
281(2)
Chapter 14 Methods of Measuring Stokes Polarization Parameters
283(28)
14.1 Introduction
283(1)
14.2 Classical Measurement Method: Quarter-Wave Retarder and Polarizer Method
283(4)
14.3 Measurement of Stokes Parameters Using a Circular Polarizer
287(4)
14.4 Null-Intensity Method
291(3)
14.5 Fourier Analysis Using a Rotating Quarter-Wave Retarder
294(3)
14.6 Method of Kent and Lawson
297(7)
14.7 Simple Tests to Determine the State of Polarization of an Optical Beam
304(7)
References
310(1)
Chapter 15 Measurement of the Characteristics of Polarizing Elements
311(16)
15.1 Introduction
311(1)
15.2 Measurement of Attenuation Coefficients of a Polarizer (Diattenuator)
311(7)
15.2.1 First Measurement Method
313(3)
15.2.2 Second Measurement Method
316(1)
15.2.3 Third Measurement Method
317(1)
15.3 Measurement of the Phase Shift of a Retarder
318(6)
15.3.1 First Method
318(2)
15.3.2 Second Method
320(3)
15.3.3 Third Method
323(1)
15.4 Measurement of Rotation Angle of a Rotator
324(3)
15.4.1 First Method
324(2)
15.4.2 Second Method
326(1)
Chapter 16 Stokes Polarimetry
327(26)
16.1 Introduction
327(1)
16.2 Rotating Element Polarimetry
327(4)
16.2.1 Rotating Analyzer Polarimeter
327(2)
16.2.2 Rotating Analyzer and Fixed Analyzer Polarimeter
329(1)
16.2.3 Rotating Retarder and Fixed Analyzer Polarimeter
329(1)
16.2.4 Rotating Retarder and Analyzer Polarimeter
329(2)
16.2.5 Rotating Retarder and Analyzer Plus Fixed Analyzer Polarimeter
331(1)
16.3 Oscillating Element Polarimetry
331(6)
16.3.1 Oscillating Analyzer Polarimeter
332(2)
16.3.2 Oscillating Retarder with Fixed Analyzer Polarimeter
334(1)
16.3.3 Oscillating Retarder and Analyzer Polarimeter
335(2)
16.4 Phase Modulation Polarimetry
337(2)
16.4.1 Phase Modulator and Fixed Analyzer Polarimeter
337(1)
16.4.2 Dual Phase Modulator and Fixed Analyzer Polarimeter
338(1)
16.5 Techniques in Simultaneous Measurement of Stokes Vector Elements
339(9)
16.5.1 Division of Wavefront Polarimetry
339(1)
16.5.2 Division of Amplitude Polarimetry
340(1)
16.5.2.1 Four-Channel Polarimeter Using Polarizing Beam Splitters
340(1)
16.5.2.2 Azzam's Four-Detector Photopolarimeter
340(6)
16.5.2.3 Division of Amplitude Polarimeters Using Gratings
346(1)
16.5.2.4 Division of Amplitude Polarimeter Using a Parallel Slab
347(1)
16.6 Optimization of Polarimeters
348(5)
References
351(2)
Chapter 17 Mueller Matrix Polarimetry
353(24)
17.1 Introduction
353(4)
17.1.1 Polarimeter Types
353(2)
17.1.2 Rotating Element Polarimeters
355(1)
17.1.3 Phase-Modulating Polarimeters
356(1)
17.2 Dual Rotating Retarder Polarimetry
357(14)
17.2.1 Polarimeter Description
357(1)
17.2.2 Mathematical Development: Obtaining the Mueller Matrix
357(4)
17.2.3 Modulated Intensity Patterns
361(1)
17.2.4 Error Compensation
362(5)
17.2.5 Optical Properties from the Mueller Matrix
367(2)
17.2.6 Measurements
369(1)
17.2.7 Spectropolarimetry
369(1)
17.2.8 Measurement Matrix Method
370(1)
17.3 Other Mueller Matrix Polarimetry Methods
371(6)
17.3.1 Modulator-Based Mueller Matrix Polarimeter
372(1)
17.3.2 Mueller Matrix Scatterometer
373(1)
17.3.3 Four-Detector Photopolarimeter
374(1)
References
375(2)
Chapter 18 Techniques in Imaging Polarimetry
377(24)
18.1 Introduction
377(1)
18.2 Historical Perspective
378(1)
18.3 Measurement Considerations
379(5)
18.3.1 Spectral Considerations
379(1)
18.3.2 One-Dimensional Polarimeters
380(1)
18.3.3 Two-Dimensional Polarimeters
380(1)
18.3.4 Three-Dimensional Polarimeters
381(1)
18.3.5 Full Stokes Polarimeters
381(1)
18.3.6 Active Imaging Polarimeters
381(1)
18.3.6.1 Mueller Matrix and Other Active Imaging Systems
382(1)
18.3.6.2 Lidar Systems
382(1)
18.3.7 Spectropolarimetric Imagers
383(1)
18.4 Measurement Strategies and Data Reduction Techniques
384(4)
18.4.1 Data Reduction Matrix Techniques
384(1)
18.4.2 Fourier Modulation Techniques
385(2)
18.4.3 Channeled Spectropolarimeters
387(1)
18.5 General Measurement Strategies: Imaging Architecture for Integrated Polarimeters
388(4)
18.5.1 Division of Time (DoTP) Polarimeter
388(1)
18.5.2 Division of Amplitude Polarimeters (DoAmP)
389(1)
18.5.3 Division of Aperture Polarimeter (DoAP)
390(1)
18.5.4 Division of Focal Plane (DoFP) Array Polarimeters
391(1)
18.6 System Considerations
392(3)
18.6.1 Alignment and Calibration of Imaging Polarimeters
392(1)
18.6.2 Experimental Determination of Data Reduction Matrix
392(1)
18.6.3 Calibration of Fourier-Based Rotating Retarder Systems
393(1)
18.6.4 Polarization Aberrations and Image Misalignment
393(1)
18.6.5 Optimization
393(2)
18.7 Summary
395(6)
References
396(5)
Chapter 19 Channeled Polarimetry for Snapshot Measurements
401(36)
19.1 Introduction
401(1)
19.2 Channeled Polarimetry
402(11)
19.2.1 Introduction to Channeled Spectropolarimetry
402(4)
19.2.2 Introduction to Channeled Imaging Polarimetry
406(2)
19.2.3 Calibration Algorithms
408(1)
19.2.3.1 CS Calibration
408(3)
19.2.3.2 CIP Calibration
411(2)
19.3 Channeled Spectropolarimetry
413(3)
19.3.1 CS with a Dispersive Spectrometer
413(2)
19.3.2 Fourier Transform CS
415(1)
19.4 Channeled Imaging Polarimetry
416(10)
19.4.1 Prismatic CIP
416(4)
19.4.2 Savart Plate CIP
420(3)
19.4.3 Dispersion Compensation in CIP
423(1)
19.4.3.1 DC in Prismatic CIP
423(1)
19.4.3.2 DC in Savart Plate CIP
424(2)
19.5 Sources of Error in Channeled Polarimetry
426(3)
19.5.1 Reconstruction Artifacts (CS and CIP)
426(1)
19.5.2 Temperature Variations (CS and CIP)
427(1)
19.5.3 Dichroism (CS and CIP)
428(1)
19.5.4 Dispersion (CS)
429(1)
19.6 Mueller Matrix Channeled Spectropolarimeters
429(2)
19.7 Channeled Ellipsometers
431(6)
References
432(5)
PART III Applications
Chapter 20 Introduction
437(2)
Chapter 21 Crystal Optics
439(32)
21.1 Introduction
439(1)
21.2 Review of Concepts from Electromagnetism
440(2)
21.3 Crystalline Materials and Their Properties
442(1)
21.4 Crystals
443(12)
21.4.1 Index Ellipsoid
448(3)
21.4.2 Natural Birefringence
451(1)
21.4.3 Wave Surface
451(3)
21.4.4 Wavevector Surface
454(1)
21.5 Application of Electric Fields: Induced Birefringence and Polarization Modulation
455(6)
21.6 Magneto-Optics
461(2)
21.7 Liquid Crystals
463(2)
21.8 Modulation of Light
465(1)
21.9 Photoelastic Modulators
466(1)
21.10 Concluding Remarks
467(4)
References
468(3)
Chapter 22 Optics of Metals
471(32)
22.1 Introduction
471(1)
22.2 Maxwell's Equations for Absorbing Media
472(9)
22.3 Principal angle of Incidence Measurement of Refractive Index and Absorption Index of Optically Absorbing Materials
481(8)
22.4 Measurement of Refractive Index and Absorption Index at an Incident Angle of 45°
489(14)
References
501(2)
Chapter 23 Polarization Optical Elements
503(26)
23.1 Introduction
503(1)
23.2 Polarizers
503(11)
23.2.1 Absorption Polarizers: Polaroid
503(6)
23.2.2 Absorption Polarizers: Polarcor
509(1)
23.2.3 Wire Grid Polarizers
510(1)
23.2.4 Plasmonic Lenses as Circular Polarizers
511(1)
23.2.5 Polarization by Refraction (Prism Polarizers)
512(2)
23.2.6 Polarization by Reflection
514(1)
23.3 Retarders
514(10)
23.3.1 Birefringent Retarders
515(3)
23.3.2 Variable Retarders
518(1)
23.3.3 Achromatic Retarders
519(1)
23.3.3.1 Infrared Achromatic Retarder
520(3)
23.3.3.2 Achromatic Waveplate Retarders
523(1)
23.4 Rotators
524(2)
23.4.1 Optical Activity
524(2)
23.4.2 Faraday Rotation
526(1)
23.4.3 Liquid Crystals
526(1)
23.5 Depolarizers
526(3)
References
527(2)
Chapter 24 Ellipsometry
529(40)
24.1 Introduction
529(1)
24.2 Fundamental Equation of Classical Ellipsometry
530(2)
24.3 Classical Measurement of the Ellipsometric Parameters Psi (ψ) and Delta (Δ)
532(9)
24.4 Solution of the Fundamental Equation of Ellipsometry
541(19)
24.4.1 Stokes's Treatment of Reflection and Refraction at an Interface
559(1)
24.5 Further Developments in Ellipsometry: Mueller Matrix Representation of ψ and Δ
560(9)
References
567(2)
Chapter 25 Form Birefringence and Meanderline Retarders
569(6)
25.1 Introduction
569(1)
25.2 Form Birefringence
569(1)
25.3 Meanderline Elements
570(5)
References
572(3)
PART IV Classical and Quantum Theory of Radiation by Accelerating Charges
Chapter 26 Introduction to Classical and Quantum Theory of Radiation by Accelerating Charges
575(2)
References
576(1)
Chapter 27 Maxwell's Equations for Electromagnetic Fields
577(6)
Reference
582(1)
Chapter 28 The Classical Radiation Field
583(12)
28.1 Field Components of the Radiation Field
583(2)
28.2 Relation between Unit Vector in Spherical Coordinates and Cartesian Coordinates
585(3)
28.3 Relation between Poynting Vector and Stokes Parameters
588(7)
References
594(1)
Chapter 29 Radiation Emitted by Accelerating Charges
595(12)
29.1 Stokes Vector for a Linearly Oscillating Charge
595(3)
29.2 Stokes Vector for an Ensemble of Randomly Oriented Oscillating Charges
598(3)
29.2.1 Note on Use of Hooke's Law for a Simple Atomic System
601(1)
29.3 Stokes Vector for a Charge Rotating in a Circle
601(3)
29.4 Stokes Vector for a Charge Moving in an Ellipse
604(3)
Chapter 30 Radiation of an Accelerating Charge in the Electromagnetic Field
607(20)
30.1 Motion of a Charge in an Electromagnetic Field
607(11)
30.1.1 Motion of an Electron in a Constant Electric Field
608(2)
30.1.2 Motion of a Charged Particle in a Constant Magnetic Field
610(4)
30.1.3 Motion of an Electron in a Crossed Electric and Magnetic Field
614(4)
30.2 Stokes Vectors for Radiation Emitted by Accelerating Charges
618(9)
30.2.1 Stokes Vector for a Charge Moving in an Electric Field
621(2)
30.2.2 Stokes Vector for a Charge Accelerating in a Constant Magnetic Field
623(2)
30.2.3 Stokes Vector for a Charge Moving in a Crossed Electric and Magnetic Field
625(1)
References
625(2)
Chapter 31 The Classical Zeeman Effect
627(18)
31.1 Historical Introduction
627(1)
31.2 Motion of a Bound Charge in a Constant Magnetic Field
628(9)
31.3 Stokes Vector for the Zeeman Effect
637(8)
References
642(3)
Chapter 32 Further Applications of the Classical Radiation Theory
645(34)
32.1 Relativistic Radiation and the Stokes Vector for a Linear Oscillator
645(7)
32.2 Relativistic Motion of a Charge Moving in a Circle: Synchrotron Radiation
652(7)
32.3 Cerenkov Effect
659(11)
32.4 Thomson and Rayleigh Scattering
670(9)
References
678(1)
Chapter 33 The Stokes Parameters and Mueller Matrices for Optical Activity and Faraday Rotation
679(16)
33.1 Introduction
679(1)
33.2 Optical Activity
680(7)
33.3 Faraday Rotation in a Transparent Medium
687(4)
33.4 Faraday Rotation in a Plasma
691(4)
References
693(2)
Chapter 34 Stokes Parameters for Quantum Systems
695(28)
34.1 Introduction
695(1)
34.2 Relation between Stokes Polarization Parameters and Quantum Mechanical Density Matrix
696(9)
34.3 Note on Perrin's Introduction of Stokes Parameters, the Density Matrix, and Linearity of Mueller Matrix Elements
705(9)
34.4 Radiation Equations for Quantum Mechanical Systems
714(1)
34.5 Stokes Vectors for Quantum Mechanical Systems
714(9)
34.5.1 Particle in an Infinite Potential Well
714(2)
34.5.2 One-Dimensional Harmonic Oscillator
716(1)
34.5.3 Rigid Rotator
717(4)
References
721(2)
Appendix A Conventions in Polarized Light 723(2)
Appendix B Jones and Stokes Vectors 725(2)
Appendix C Jones and Mueller Matrices 727(4)
Appendix D Relationships between the Jones and Mueller Matrix Elements 731(2)
Appendix E Vector Representation of the Optical Field: Application to Optical Activity 733(12)
Bibliography 745(2)
Index 747
Dr. Dennis Goldstein is a senior physicist with Polaris Sensor Technologies, Inc., following a 28-year career in electro-optics research at the Air Force Research Laboratory. He is a fellow of SPIE and AFRL, and has served as an adjunct professor at the University of Arizona and University of Florida. He also teaches short courses for the Georgia Institute of Technology. In addition to Polarized Light, Dr. Goldstein has published more than 70 papers and technical reports, and two book chapters. He holds six patents.