Atjaunināt sīkdatņu piekrišanu

Pole Solutions for Flame Front Propagation Softcover reprint of the original 1st ed. 2015 [Mīkstie vāki]

  • Formāts: Paperback / softback, 118 pages, height x width: 235x155 mm, weight: 2058 g, 10 Illustrations, color; 27 Illustrations, black and white; XII, 118 p. 37 illus., 10 illus. in color., 1 Paperback / softback
  • Sērija : Mathematical and Analytical Techniques with Applications to Engineering
  • Izdošanas datums: 15-Oct-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319368818
  • ISBN-13: 9783319368818
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 118 pages, height x width: 235x155 mm, weight: 2058 g, 10 Illustrations, color; 27 Illustrations, black and white; XII, 118 p. 37 illus., 10 illus. in color., 1 Paperback / softback
  • Sērija : Mathematical and Analytical Techniques with Applications to Engineering
  • Izdošanas datums: 15-Oct-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319368818
  • ISBN-13: 9783319368818
Citas grāmatas par šo tēmu:

This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

Introduction.- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry.- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane.- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries.- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.- Summary.