Atjaunināt sīkdatņu piekrišanu

E-grāmata: Polyadic Groups

  • Formāts: 424 pages
  • Izdošanas datums: 22-Mar-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040001042
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 424 pages
  • Izdošanas datums: 22-Mar-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040001042

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book provides a general, unified approach to the theory of polyadic groups, their normal subgroups and matrix representations. The author focuses on those properties of polyadic groups which are not present in the binary case. These properties indicate a strong relationship between polyadic groups and various group-like algebras, as well as ternary Hopf algebras and n-Lie algebras that are widely used in theoretical physics. The relationships of polyadic groups with special types of binary groups called covering groups and binary retracts is described. These relationships allow the study of polyadic groups using these binary groups and their automorphisms. The book also describes the affine geometry induced by polyadic groups and fuzzy subsets defined on polyadic groups. Finally, we discuss the category of polyadic groups and the relationships between the different varieties of polyadic groups. In many cases, we give elegant new proofs of known theorems. We also give many interesting examples and applications. The book contains many little-known results from articles previously published in hard-to-reach Russian, Ukrainian and Macedonian journals. These articles are not in English"--

This book provides a general, unified approach to the theory of polyadic groups, their normal subgroups and matrix representations.

The author focuses on those properties of polyadic groups which are not present in the binary case. These properties indicate a strong relationship between polyadic groups and various group-like algebras, as well as ternary Hopf algebras and n-Lie algebras that are widely used in theoretical physics.

The relationships of polyadic groups with special types of binary groups, called covering groups and binary retracts, are described. These relationships allow the study of polyadic groups using these binary groups and their automorphisms.

The book also describes the affine geometry induced by polyadic groups and fuzzy subsets defined on polyadic groups. Finally, we discuss the categories of polyadic groups and the relationships between the different varieties of polyadic groups. In many cases, we give elegant new proofs of known theorems. We also give many interesting examples and applications.

The book contains many little-known results from articles previously published in hard-to-reach Russian, Ukrainian and Macedonian journals. These articles are not in English.



This book provides a general, unified approach to the theory of polyadic groups, their normal subgroups and matrix representations.

1. Basic concepts.
2. Varieties of $n$-groups.
3. Partially commutative $n$-groups.
4. Subgroups.
5. Cyclic $n$-groups.
6. Automorphisms.
7. Representations of $n$-groups.
8. Various types of $n$-groups.
9. Geometry induced by $n$-groups.
10. Category of $n$-groups .

Wieslaw A. Dudek received his PhD in Mathematics from the Institute of Mathematics of the Moldavian Academy of Sciences, Moldova (supervisor: V.D. Belousov). A few years later, he received an academic degree, Dr Sci. (habilitation), from the Warsaw University of Technology. His research areas are universal algebra, n-ary systems (especially n-ary groups), quasigroups, algebraic logics and various types of fuzzy sets. He has published more than 150 research papers and six books cited in more than 30 monographs. His h-index is 24. He is a member of the editorial board of several mathematical journals and the main editor of the journal Quasigroups and Related Systems.