Atjaunināt sīkdatņu piekrišanu

Polymer Composites, Biocomposites Volume 3 [Hardback]

Edited by (Composites Technology Centre, Chennai, India), Edited by (Cochin University of Sc), Edited by (Indian Institute of Space, Science, and Technology, Thiruvananthapuram, India), Edited by (Yamaguchi University, Ube, Japan), Edited by (Mahatma Gandhi University, Kottayam, India)
  • Formāts: Hardback, 608 pages, height x width x depth: 246x173x36 mm, weight: 1261 g
  • Sērija : Polymer Composites
  • Izdošanas datums: 09-Oct-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527329803
  • ISBN-13: 9783527329809
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 228,45 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 608 pages, height x width x depth: 246x173x36 mm, weight: 1261 g
  • Sērija : Polymer Composites
  • Izdošanas datums: 09-Oct-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527329803
  • ISBN-13: 9783527329809
Citas grāmatas par šo tēmu:
Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles.



This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites.

The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications.

Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
The Editors xix
List of Contributors
xxi
1 Advances in Polymer Composites: Biocomposites--State of the Art, New Challenges, and Opportunities
1(10)
Koichi Goda
Meyyarappallil Sadasivan Sreekala
Sant Kumar Malhotra
Kuruvilla Joseph
Sabu Thomas
1.1 Introduction
1(2)
1.2 Development of Biocomposite Engineering
3(2)
1.3 Classification of Biocomposites
5(6)
References
8(3)
2 Synthesis, Structure, and Properties of Biopolymers (Natural and Synthetic)
11(98)
Raju Francis
Soumya Sasikumar
Geethy P. Gopalan
2.1 Introduction
11(2)
2.2 Classification
13(1)
2.3 Natural Biopolymers
13(41)
2.3.1 Proteins
14(1)
2.3.1.1 Collagen
15(3)
2.3.1.2 Elastin
18(1)
2.3.1.3 Albumin
19(1)
2.3.1.4 Fibrin
19(1)
2.3.1.5 Fibronectin
20(1)
2.3.1.6 Zein
20(1)
2.3.1.7 Gluten
21(1)
2.3.1.8 Gelatin
22(1)
2.3.1.9 Soy Protein
23(1)
2.3.1.10 Whey Protein
24(1)
2.3.1.11 Casein
24(3)
2.3.2 Polysaccharides
27(1)
2.3.2.1 Cellulose
27(1)
2.3.2.2 Starch
28(2)
2.3.2.3 Chitosan
30(1)
2.3.2.4 Chitin
31(1)
2.3.2.5 Hyaluronic Acid (HA)
32(1)
2.3.2.6 Alginic Acid
32(1)
2.3.2.7 Pectin
33(1)
2.3.3 Polysaccharides from Marine Sources
34(1)
2.3.3.1 Agar
34(1)
2.3.3.2 Agarose
34(1)
2.3.3.3 Alginic Acid/Alginate
35(1)
2.3.3.4 Carrageenan
36(1)
2.3.3.5 Cutan
36(2)
2.3.3.6 Cutin
38(1)
2.3.4 Low Molecular Weight Biopolymers
39(1)
2.3.4.1 Guar Gum
39(1)
2.3.4.2 Rosin
40(1)
2.3.4.3 Chondroitin Sulfate
41(1)
2.3.4.4 Gum Copal
41(1)
2.3.4.5 Gum Damar
42(1)
2.3.5 Microbial Synthesized Biopolymers
42(1)
2.3.5.1 Pullulan
42(1)
2.3.5.2 Dextran
43(1)
2.3.5.3 Curdlan
44(1)
2.3.5.4 Xanthan
45(1)
2.3.5.5 Bacterial Cellulose
46(1)
2.3.6 Natural Poly(Amino Acids)
46(3)
2.3.6.1 Jute
49(1)
2.3.6.2 Coir
49(1)
2.3.6.3 Yarn
49(1)
2.3.6.4 Silk
49(1)
2.3.7 Nucleic Acids
50(1)
2.3.7.1 Natural Nucleic Acids
50(1)
2.3.7.2 Synthetic Nucleic Acids (SNA)
51(3)
2.4 Synthetic Biopolymers
54(10)
2.4.1 Poly(Glycolide) PGA or Poly(Glycolic Acid)
55(1)
2.4.2 Poly(Lactic Acid) (PLA)
55(1)
2.4.3 Poly(Lactide-co-Glycolide)
56(1)
2.4.4 Polycaprolactone (PCL)
57(1)
2.4.5 Poly(p-Dioxanone) (PDO)
57(1)
2.4.6 Poly(Trimethylene Carbonate) (PTMC)
58(1)
2.4.7 Poly-β-Hydroxybutyrate (PHB)
58(1)
2.4.8 Poly(Glycerol Sebacic Acid) (PGS)
58(1)
2.4.9 Poly(Propylene Fumarate) (PPF)
59(1)
2.4.10 Poly(Anhydrides) (PAs)
60(1)
2.4.11 Poly(Orthoesters) (POEs)
60(1)
2.4.12 Poly(Phosphazene)
61(1)
2.4.13 Poly(Vinyl Alcohol) (PVA)
62(1)
2.4.14 Poly(Hydroxyalkanoates) (PHAs)
63(1)
2.4.15 Poly(Ester Amides) (PEAs)
63(1)
2.5 Need for Biopolymers
64(1)
2.6 Exceptional Properties of Biopolymers
65(1)
2.7 Biomedical Polymers
65(6)
2.7.1 Chitosan
66(1)
2.7.2 Poly(Lactic Acid) (PLA)
67(1)
2.7.3 Collagen
67(1)
2.7.4 Polycaprolactone (PCL)
68(1)
2.7.5 Poly(2-Hydroxyethyl Methacrylate) (PHEMA)
68(1)
2.7.6 Carbohydrate-Based Vaccines
69(1)
2.7.7 Chitin
69(1)
2.7.8 Albumin
69(1)
2.7.9 Fibrin
70(1)
2.7.10 Hyaluronic Acid (HA)
70(1)
2.7.11 Chondroitin Sulfate (CS)
70(1)
2.7.12 Alginic Acid
70(1)
2.7.13 Poly(Anhydrides)
70(1)
2.8 Composite Material
71(1)
2.9 Blends
71(1)
2.10 Applications of Biopolymers
72(8)
2.10.1 Medical Applications
72(1)
2.10.1.1 Surgical Sutures
72(1)
2.10.1.2 Bone Fixation Devices
73(1)
2.10.1.3 Vascular Grafts
73(1)
2.10.1.4 Adhesion Prevention
74(1)
2.10.1.5 Artificial Skin
74(1)
2.10.1.6 Drug Delivery Systems
74(1)
2.10.1.7 Artificial Corneas
75(1)
2.10.1.8 Artificial Blood Vessels
75(1)
2.10.2 Agricultural Applications
76(1)
2.10.2.1 Agricultural Mulches
76(1)
2.10.2.2 Controlled Release of Agricultural Chemicals
77(1)
2.10.2.3 Agricultural Planting Containers
77(1)
2.10.3 Packaging
77(1)
2.10.3.1 Starch-Based Packaging Materials
78(1)
2.10.3.2 PLA-Based Packaging Materials
78(1)
2.10.3.3 Cellulose-Based Packaging Materials
79(1)
2.10.3.4 Pullulan-Based Packaging Materials
79(1)
2.10.3.5 Other Biopackaging Solution
80(1)
2.11 Partially Biodegradable Packaging Materials
80(1)
2.12 Nonbiodegradable Biopolymers
80(2)
2.12.1 Poly(Thioesters)
80(1)
2.12.1.1 Poly(3-Mercaptopropionate) (Poly(3MP))
81(1)
2.13 Conversion of Nonbiodegradable to Biodegradable Polymers
82(1)
2.14 Current Research Areas in Biopolymers and Bioplastics
82(1)
2.15 General Findings and Future Prospects
83(26)
Acknowledgments
83(1)
Abbreviations
84(1)
References
84(25)
3 Preparation, Microstructure, and Properties of Biofibers
109(24)
Takashi Nishino
3.1 Introduction
109(1)
3.2 Structure of Natural Plant Fibers
110(7)
3.2.1 Microstructure
110(4)
3.2.2 Crystal Structure
114(3)
3.3 Ultimate Properties of Natural Fibers
117(4)
3.3.1 Elastic Modulus
117(3)
3.3.2 Tensile Strength
120(1)
3.4 Mechanical and Thermal Properties of Cellulose Microfibrils and Macrofibrils
121(5)
3.5 All-Cellulose Composites and Nanocomposites
126(3)
3.6 Conclusions
129(4)
References
129(4)
4 Surface Treatment and Characterization of Natural Fibers: Effects on the Properties of Biocomposites
133(46)
Donghwan Cho
Hyun-Joong Kim
Lawrence T. Drzal
4.1 Introduction
133(1)
4.2 Why Is Surface Treatment of Natural Fibers Important in Biocomposites?
134(3)
4.3 What Are the Surface Treatment Methods of Natural Fibers?
137(12)
4.3.1 Chemical Treatment Methods
138(1)
4.3.1.1 Alkali Treatment
138(1)
4.3.1.2 Silane Treatment
139(4)
4.3.1.3 Acetylation Treatment
143(1)
4.3.1.4 Benzoylation and Benzylation Treatments
143(1)
4.3.1.5 MAPP Treatment
143(1)
4.3.1.6 Peroxide Treatment
144(1)
4.3.2 Physical Treatment Methods
145(1)
4.3.2.1 Plasma Treatment
145(1)
4.3.2.2 Corona Treatment
146(1)
4.3.2.3 Electron Beam Treatment
147(1)
4.3.2.4 Ultraviolet Treatment
147(1)
4.3.2.5 Ultrasonic Treatment
148(1)
4.4 How Does the Surface Treatment Influence the Properties of Biocomposites?
149(19)
4.4.1 Chemical Changes of Natural Fibers
149(1)
4.4.2 Morphological and Structural Changes of Natural Fibers
150(1)
4.4.3 Mechanical Changes of Natural Fibers
151(2)
4.4.4 Interfacial Properties of Biocomposites
153(4)
4.4.5 Mechanical Properties of Biocomposites
157(3)
4.4.6 Impact Properties of Biocomposites
160(1)
4.4.7 Dynamic Mechanical Properties of Biocomposites
161(3)
4.4.8 Thermal Properties of Biocomposites
164(2)
4.4.9 Water Absorption Behavior of Biocomposites
166(2)
4.5 Concluding Remarks
168(11)
References
169(10)
5 Manufacturing and Processing Methods of Biocomposites
179(34)
5.1 Processing Technology of Natural Fiber-Reinforced Thermoplastic Composite
179(18)
Tatsuya Tanaka
5.1.1 Background
179(2)
5.1.2 NF-Reinforced PLA Resin Composite Material
181(1)
5.1.3 Pellet Production Technology of Continuation Fiber-Reinforced Thermoplastic Resin Composite Material
181(2)
5.1.4 Pellet Manufacturing Technology of the Continuous Natural Fiber--Reinforced Thermoplastic Resin Composite Material
183(1)
5.1.4.1 Process Outline
183(1)
5.1.4.2 Review of Mechanical Apparatus
183(2)
5.1.4.3 Main Equipment
185(1)
5.1.4.4 Process Features
186(2)
5.1.4.5 Mechanical Properties of NF-LFP
188(1)
5.1.5 Pellet Manufacturing Technology of the Distributed Type Natural Fiber--Reinforced Thermoplastic Resin Composites
189(1)
5.1.5.1 Process Development
189(2)
5.1.5.2 Automatic Material-Supplying System
191(2)
5.1.5.3 Optimal Screw Configuration and Influence of BF Fiber Diameter
193(2)
5.1.5.4 Influence of BF Content
195(2)
5.1.6 Future Outlook
197(1)
5.2 Processing Technology of Wood Plastic Composite (WPC)
197(16)
Hirokazu Ito
5.2.1 Raw Materials
198(1)
5.2.1.1 Manufacture of Woody Materials
198(4)
5.2.1.2 Plastic
202(1)
5.2.1.3 Compatibilizer
202(1)
5.2.2 Compounding Process
203(1)
5.2.2.1 Compounding Using an Extrusion Machine
203(1)
5.2.2.2 Compounding Using a Henschel Type Mixer
204(1)
5.2.2.3 Evaluation of Compounds
205(2)
5.2.3 Molding Process
207(1)
5.2.3.1 Extrusion Molding
207(1)
5.2.3.2 Injection Molding
208(1)
5.2.4 The Future Outlook for WPC in Industry
209(1)
References
209(4)
6 Biofiber-Reinforced Thermoset Composites
213(26)
Masatoshi Kubouchi
Terence P. Tumolva
Yoshinobu Shimamura
6.1 Introduction
213(1)
6.2 Materials and Fabrication Techniques
213(7)
6.2.1 Thermosetting Resins
213(1)
6.2.1.1 Synthetic Thermosets
214(1)
6.2.1.2 Biosynthetic Thermosets
215(1)
6.2.2 Natural Fibers
215(2)
6.2.3 Fabrication Techniques
217(1)
6.2.3.1 Hand Layup
218(1)
6.2.3.2 Compression Molding
219(1)
6.2.3.3 Filament Winding
219(1)
6.2.3.4 Pultrusion
219(1)
6.2.3.5 Resin Transfer Molding
220(1)
6.3 Biofiber-Reinforced Synthetic Thermoset Composites
220(5)
6.3.1 Polyester-Based Composites
220(2)
6.3.2 Epoxy-Based Composites
222(1)
6.3.3 Vinyl Ester-Based Composites
223(1)
6.3.4 Phenolic Resin-Based Composites
224(1)
6.3.5 Other Thermoset-Based Composites
225(1)
6.4 Biofiber-Reinforced Biosynthetic Thermoset Composites
225(6)
6.4.1 Lignin-Based Composites
225(1)
6.4.2 Protein-Based Composites
226(1)
6.4.3 Tannin-Based Composites
227(1)
6.4.4 Triglyceride-Based Composites
228(1)
6.4.5 Other Thermoset-Based Composites
229(2)
6.5 End-of-Life Treatment of NFR Thermoset Composites
231(2)
6.5.1 Recycling as Composite Fillers
231(1)
6.5.2 Pyrolysis
232(1)
6.5.3 Chemical Recycling
232(1)
6.5.4 Energy Recovery
233(1)
6.6 Conclusions
233(6)
References
234(5)
7 Biofiber-Reinforced Thermoplastic Composites
239(50)
Susheel Kalia
Balbir Singh Kaith
Inderjeet Kaur
James Njuguna
7.1 Introduction
239(1)
7.2 Source of Biofibers
240(1)
7.3 Types of Biofibers
241(7)
7.3.1 Annual Biofibers
241(1)
7.3.1.1 Straw
242(1)
7.3.1.2 Bast Fiber
242(2)
7.3.1.3 Grasses
244(1)
7.3.1.4 Residues
244(1)
7.3.2 Perennial Biofibers (Wood Fibers)
245(1)
7.3.2.1 Tree Plantation Products
245(1)
7.3.2.2 Forest Plant Products
246(1)
7.3.2.3 Agro-Forestry Products
246(2)
7.4 Advantages of Biofibers
248(1)
7.5 Disadvantages of Biofibers
248(2)
7.6 Graft Copolymerization of Biofibers
250(2)
7.7 Surface Modifications of Biofibers Using Bacterial Cellulose
252(3)
7.8 Applications of Biofibers as Reinforcement
255(16)
7.8.1 Composite Boards
256(1)
7.8.1.1 Particleboards
256(2)
7.8.1.2 Fiberboards
258(1)
7.8.2 Biofiber-Reinforced Thermoplastic Composites
259(1)
7.8.2.1 Bamboo Fiber-Reinforced Thermoplastics
259(1)
7.8.2.2 Ramie Fiber-Reinforced Thermoplastics
260(1)
7.8.2.3 Flax Fiber-Reinforced Thermoplastics
261(3)
7.8.2.4 Sisal Fiber-Reinforced Thermoplastics
264(2)
7.8.2.5 Jute Fiber Reinforced-Thermoplastics
266(3)
7.8.2.6 Hemp Fiber-Reinforced Thermoplastics
269(2)
7.9 Biofiber Graft Copolymers Reinforced Thermoplastic Composites
271(3)
7.10 Bacterial Cellulose and Bacterial Cellulose-Coated, Biofiber-Reinforced, Thermoplastic Composites
274(3)
7.11 Applications of Biofiber-Reinforced Thermoplastic Composites
277(1)
7.12 Conclusions
278(11)
References
279(10)
8 Biofiber-Reinforced Natural Rubber Composites
289(28)
Parambath Madhom Sreekumar
Preetha Gopalakrishnan
Jean Marc Saiter
8.1 Introduction
289(1)
8.2 Natural Rubber (NR)
289(1)
8.3 Biofibers
290(2)
8.4 Processing
292(1)
8.5 Biofiber-Reinforced Rubber Composites
292(15)
8.5.1 Cure Characteristics
293(1)
8.5.2 Mechanical Properties
294(1)
8.5.2.1 Effect of Fiber Length
294(1)
8.5.2.2 Effect of Fiber Orientation
295(1)
8.5.2.3 Effect of Fiber Loading
296(4)
8.5.3 Viscoelastic Properties
300(2)
8.5.4 Diffusion and Swelling Properties
302(2)
8.5.5 Dielectric Properties
304(1)
8.5.6 Rheological and Aging Characteristics
305(2)
8.6 Approaches to Improve Fiber--Matrix Adhesion
307(5)
8.6.1 Mercerization
307(1)
8.6.2 Benzoylation
308(1)
8.6.3 Coupling Agents
308(1)
8.6.4 Bonding Agents
309(3)
8.7 Applications
312(1)
8.8 Conclusions
312(5)
References
312(5)
9 Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Microfibrillated Cellulose
317(14)
Kazuya Okubo
Toru Fujii
9.1 Introduction
317(1)
9.2 Materials
318(2)
9.2.1 Matrix
318(1)
9.2.2 Bamboo Fibers
318(1)
9.2.3 Microfibrillated cellulose (MFC)
319(1)
9.3 Experiments
320(2)
9.3.1 Fabrication Procedure of Developed Composite Using PLA, BF, and MFC (PLA/BF/MFC Composite)
320(1)
9.3.2 Three-Point Bending Test
321(1)
9.3.3 Microdrop Test
321(1)
9.3.4 Fracture Toughness Test
321(1)
9.3.5 Bamboo Fiber Embedded Test
322(1)
9.4 Results and Discussion
322(6)
9.4.1 Internal State of PLA/BF/MFC Composite
322(1)
9.4.2 Bending Strength of PLA/BF/MFC Composite
322(3)
9.4.3 Fracture Toughness of PLA/BF/MFC Composite
325(1)
9.4.4 Crack Propagation Behavior
325(3)
9.5 Conclusion
328(3)
Acknowledgments
328(1)
References
328(3)
10 Textile Biocomposites
331(31)
10.1 Elastic Properties of Twisted Yarn Biocomposites
331(14)
Koichi Goda
Rie Nakamura
10.1.1 Introduction
331(1)
10.1.2 Classical Theories of Yarn Elastic Modulus
332(3)
10.1.3 Orthotropic Theory for Twisted Yarn-Reinforced Composites
335(1)
10.1.3.1 Yarn Modulus Based on Orthotropic Theory
335(3)
10.1.3.2 Relation between Mechanical Properties and Twist Angle
338(3)
10.1.3.3 Extension of Theory to Off-Axis Loading
341(3)
10.1.4 Conclusion
344(1)
10.2 Fabrication Process for Textile Biocomposites
345(17)
Asami Nakai
Louis Laberge Lebel
10.2.1 Introduction
345(1)
10.2.2 Intermediate Materials for Continuous Natural Fiber-Reinforced Thermoplastic Composites
345(4)
10.2.3 Braid-Trusion of Jute/Polylactic Acid Composites
349(1)
10.2.3.1 Braid Geometry
349(4)
10.2.3.2 Experiments
353(3)
10.2.3.3 Results and Discussion
356(2)
10.2.4 Conclusion
358(1)
References
358(4)
11 Bionanocomposites
362(69)
Eliton S. Medeiros
Amelia S.F. Santos
Alain Dufresne
William J. Orts
Luiz H. C. Mattoso
11.1 Introduction
361(1)
11.2 Bionanocomposites
362(57)
11.2.1 Bionanocomposite Classification
362(1)
11.2.1.1 Particulate Bionanocomposites
363(1)
11.2.1.2 Elongated Particle Bionanocomposites
363(1)
11.2.1.3 Layered Particle-Reinforced Bionanocomposites
363(1)
11.2.2 Reinforcements Used in Bionanocomposites
364(1)
11.2.2.1 Nanoclays
365(1)
11.2.2.2 Cellulose
365(3)
11.2.2.3 Chitin and Chitosan
368(1)
11.2.3 Matrices for Bionanocomposites
369(1)
11.2.3.1 Polysaccharides
370(5)
11.2.3.2 Biodegradable Polymers from Microorganisms and Biotechnology
375(2)
11.2.3.3 Biodegradable Polymers from Petrochemical Products
377(3)
11.2.4 Mixing, Processing, and Characterization of Bionanocomposites
380(1)
11.2.4.1 Mixing
380(1)
11.2.4.2 Processing
381(1)
11.2.4.3 Characterization
382(1)
11.2.5 Polysaccharide Bionanocomposites
383(1)
11.2.5.1 Starch Bionanocomposites
383(4)
11.2.5.2 Chitin Bionanocomposites
387(1)
11.2.5.3 Chitosan Bionanocomposites
388(3)
11.2.6 Protein Bionanocomposites
391(1)
11.2.6.1 Soy Protein Isolate
392(3)
11.2.6.2 Gelatin
395(2)
11.2.6.3 Collagen
397(1)
11.2.6.4 Other Protein-Based Bionanocomposites
398(1)
11.2.7 Bionanocomposites Using Biodegradable Polymers from Microorganisms and Biotechnology
399(1)
11.2.7.1 Polyhydroxyalkanoates
399(5)
11.2.7.2 Polylactides
404(2)
11.2.8 Bionanocomposites Using Biodegradable Polymers from Petrochemical Products
406(1)
11.2.8.1 Poly(ε-Caprolactone)
406(5)
11.2.8.2 Polyesteramides
411(1)
11.2.8.3 Aliphatic and Aromatic Polyesters and Their Copolymers
412(4)
11.2.9 Other Biodegradable Polymers
416(1)
11.2.9.1 Poly(Vinyl Alcohol)
416(1)
11.2.9.2 Poly(Vinyl Acetate)
417(1)
11.2.9.3 Poly(Glycolic Acid)
418(1)
11.3 Final Remarks
419(12)
References
420(11)
12 Fully Biodegradable "Green" Composites
431(34)
Rie Nakamura
Anil N. Netravali
12.1 Introduction
431(3)
12.2 Soy Protein-Based Green Composites
434(7)
12.2.1 Introduction
434(1)
12.2.2 Fiber/Soy Protein Interfacial Properties
435(2)
12.2.3 Effect of Soy Protein Modification on the Properties of Resins and Composites
437(1)
12.2.3.1 Effect of Phytagel® Addition
437(2)
12.2.3.2 Effect of Stearic Acid Modification
439(2)
12.3 Starch-Based Green Composites
441(9)
12.3.1 Introduction
441(1)
12.3.2 Fiber Treatments
442(1)
12.3.2.1 Studies on Fiber Treatment
442(1)
12.3.2.2 Relationship between NaOH Concentration and Cellulose
442(2)
12.3.2.3 Effect of NaOH Treatment of Ramie Yarns on the Tensile Properties of Starch-Based Green Composites
444(2)
12.3.3 Cellulose Nanofiber-Reinforced "Green" Composites
446(1)
12.3.4 Evaluation of Mechanical Properties of Green Composites
447(3)
12.4 Biodegradation of "Green" Composites
450(15)
12.4.1 Biodegradation of PHBV
451(4)
12.4.2 Effect of Soy Protein Modification on Its Biodegradation
455(3)
12.4.3 Biodegradation of Starch-Based Green Composites
458(2)
References
460(5)
13 Applications and Future Scope of "Green" Composites
465(18)
Hyun-Joong Kim
Hyun-Ji Lee
Taek-Jun Chung
Hyeok-Jin Kwon
Donghwan Cho
William Tai Yin Tze
13.1 Introduction
465(2)
13.1.1 Biodegradable Plastics versus Traditional Plastics
466(1)
13.2 Applications of Biocomposites (Products/Applications/Market)
467(9)
13.2.1 Survey of Technical Applications of Natural Fiber Composites
467(1)
13.2.1.1 The International Trend in Biocomposites
468(1)
13.2.2 Automotive Applications
469(1)
13.2.2.1 Materials
469(1)
13.2.2.2 Requirements
470(1)
13.2.2.3 Market and Products
471(1)
13.2.3 Structural Applications
472(1)
13.2.3.1 Materials for Structural Applications of Green Composites
473(1)
13.2.3.2 Requirements
473(3)
13.3 Future Scope
476(2)
13.3.1 Choice of Materials and Processing Methods
477(1)
13.4 Conclusion
478(5)
References
479(4)
14 Biomedical Polymer Composites and Applications
483(32)
Dionysis E. Mouzakis
14.1 Introduction
483(2)
14.2 Biocompatibility Issues
485(3)
14.3 Natural Matrix Based Polymer Composites
488(6)
14.3.1 Silk Biocomposites
488(1)
14.3.2 Chitin and Chitosan as Matrices
489(1)
14.3.3 Mammal Protein-Based Biocomposites
490(1)
14.3.4 Hyaluronic Acid Composites
491(2)
14.3.5 Other Natural Polymer Matrices
493(1)
14.4 Synthetic Polymer Matrix Biomedical Composites
494(8)
14.4.1 Biodegradable Polymer Matrices
495(4)
14.4.2 Synthetic Polymer Composites
499(1)
14.4.2.1 Orthopedic Applications
499(1)
14.4.2.2 Dental Applications
500(2)
14.4.2.3 Other Tissue Engineering Applications
502(1)
14.5 Smart Polymers and Biocomposites
502(2)
14.6 Polymer-Nanosystems and Nanocomposites in Medicine
504(2)
14.7 Conclusions
506(1)
14.8 Outlook
507(8)
References
507(8)
15 Environmental Effects, Biodegradation, and Life Cycle Analysis of Fully Biodegradable "Green" Composites
515(54)
Ajalesh Balachandran Nair
Palanisamy Sivasubramanian
Preetha Balakrishnan
Kurungattu Arjunan Nair Ajith Kumar
Meyyarappallil Sadasivan Sreekala
15.1 Introduction
515(3)
15.2 Environmental Aspects
518(2)
15.3 Environmental Impacts of Green Composite Materials
520(1)
15.4 Choice of Impact Categories
521(1)
15.4.1 Global Warming
521(1)
15.4.2 Acidification
521(1)
15.4.3 Abiotic Depletion
521(1)
15.5 Environmental Impact of Polylactide
522(1)
15.6 Environmental Effect of Polyvinyl Alcohol (PVA)
523(3)
15.7 Potential Positive Environmental Impacts
526(1)
15.7.1 Composting
526(1)
15.7.2 Landfill Degradation
526(1)
15.7.3 Energy Use
526(1)
15.8 Potential Negative Environmental Impacts
526(3)
15.8.1 Pollution of Aquatic Environments
527(1)
15.8.1.1 Increased Aquatic BOD
527(1)
15.8.1.2 Water Transportable Degradation Products
527(1)
15.8.1.3 Risk to Marine Species
528(1)
15.8.2 Litter
528(1)
15.8.2.1 Determination of Appropriate Disposal Environments
528(1)
15.8.2.2 Role of the Built Environment
529(1)
15.9 Biodegradation
529(3)
15.9.1 Biodegradability Test
530(1)
15.9.1.1 Natural Soil Burial Test and Simulated Municipal Solid Waste (MSW) Aerobic Compost Test
530(1)
15.9.1.2 Mechanical Property and Weight Loss Tests after Biodegradability
530(1)
15.9.1.3 Microbial Counts in Natural and Compost Soil
531(1)
15.9.1.4 Molecular Weight after Biodegradability
531(1)
15.9.1.5 Differential Scanning Calorimetry (DSC) Analysis
531(1)
15.9.1.6 FTIR-ATR Analysis
532(1)
15.9.1.7 Morphological Test
532(1)
15.10 Advantages of Green Composites over Traditional Composites
532(1)
15.11 Disadvantages of Green Composites
532(1)
15.12 Application and End-Uses
532(2)
15.12.1 Automobiles
533(1)
15.12.2 Aircrafts and Ships
533(1)
15.12.3 Mobile Phones
533(1)
15.12.4 Decorative Purposes
534(1)
15.12.5 Uses
534(1)
15.13 Biodegradation of Polyvinyl Alcohol (PVA) under Different Environmental Conditions
534(2)
15.13.1 Biodegradation of Polyvinyl Alcohol under Composting Conditions
535(1)
15.13.2 Biodegradation of Polyvinyl Alcohol in Soil Environment
535(1)
15.13.3 Anaerobic Biodegradation of Polyvinyl Alcohol in Aqueous Environments
536(1)
15.14 Biodegradation of Polylactic Acid
536(1)
15.15 Biodegradation of Polylactic Acid and Its Composites
537(2)
15.16 Biodegradation of Cellulose
539(1)
15.17 Cellulose Fiber-Reinforced Starch Biocomposites
539(2)
15.18 Life Cycle Assessment (LCA)
541(5)
15.18.1 Methods
542(1)
15.18.2 Green Design Metrics
543(2)
15.18.3 Decision Matrix
545(1)
15.19 Life Cycle Assessment Results
546(2)
15.20 Green Principles Assessment Results
548(1)
15.21 Comparison
548(3)
15.22 Life Cycle Inventory Analysis of Green Composites
551(5)
15.22.1 Fiber Composites
551(1)
15.22.2 Natural Fibers
552(1)
15.22.3 Life Cycle Analysis of Polylactide (PLA)
552(4)
15.23 Life Cycle Analysis of Poly(hydroxybutyrate)
556(1)
15.24 Life Cycle Analysis of Cellulose Fibers
556(2)
15.25 Conclusions
558(11)
Abbreviations
559(2)
References
561(8)
Index 569
Sabu Thomas is a Professor of Polymer Science and Engineering at Mahatma Gandhi University (India). He is a Fellow of the Royal Society of Chemistry and a Fellow of the New York Academy of Sciences. Thomas has published over 300 papers in peer reviewed journals on his polymer composite, membrane separation, polymer blend and alloy, and polymer recycling research and has edited three books.

Kuruvilla Joseph is a Reader at St. Berchmans' College (India). He has held a number of visiting research fellowships and has published ca. 50 papers on polymer composites and blends.

S. K. Malhotra is Chief Design Engineer and Head of the Composites Technology Centre at the Indian Institute of Technology, Madras. He has published over 100 journal and proceedings papers on polymer and alumina-zirconia composites.

Koichi Goda is a Professor of Mechanical Engineering at Yamaguchi University. His major scientific fields of interest are reliability and engineering analysis of composite materials and development and evaluation of environmentally friendly and other advanced composite materials.

M. S. Sreekala is a Senior Research Associate in the Department of Polymer Science and Rubber Technology at Cochin University of Science and Technology (India). She has published over 30 papers on polymer composites (including biodegradable and green composites) in peer reviewed journals and has held a number of Research Fellowships, including those from the Humboldt Foundation and Japan Society for Promotion of Science.