The Editors |
|
xix | |
|
|
xxi | |
|
1 Advances in Polymer Composites: Biocomposites--State of the Art, New Challenges, and Opportunities |
|
|
1 | (10) |
|
|
Meyyarappallil Sadasivan Sreekala |
|
|
|
|
|
|
1 | (2) |
|
1.2 Development of Biocomposite Engineering |
|
|
3 | (2) |
|
1.3 Classification of Biocomposites |
|
|
5 | (6) |
|
|
8 | (3) |
|
2 Synthesis, Structure, and Properties of Biopolymers (Natural and Synthetic) |
|
|
11 | (98) |
|
|
|
|
|
11 | (2) |
|
|
13 | (1) |
|
|
13 | (41) |
|
|
14 | (1) |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.3.2.5 Hyaluronic Acid (HA) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
2.3.3 Polysaccharides from Marine Sources |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
2.3.3.3 Alginic Acid/Alginate |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (2) |
|
|
38 | (1) |
|
2.3.4 Low Molecular Weight Biopolymers |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
2.3.4.3 Chondroitin Sulfate |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.3.5 Microbial Synthesized Biopolymers |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
2.3.5.5 Bacterial Cellulose |
|
|
46 | (1) |
|
2.3.6 Natural Poly(Amino Acids) |
|
|
46 | (3) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
2.3.7.1 Natural Nucleic Acids |
|
|
50 | (1) |
|
2.3.7.2 Synthetic Nucleic Acids (SNA) |
|
|
51 | (3) |
|
2.4 Synthetic Biopolymers |
|
|
54 | (10) |
|
2.4.1 Poly(Glycolide) PGA or Poly(Glycolic Acid) |
|
|
55 | (1) |
|
2.4.2 Poly(Lactic Acid) (PLA) |
|
|
55 | (1) |
|
2.4.3 Poly(Lactide-co-Glycolide) |
|
|
56 | (1) |
|
2.4.4 Polycaprolactone (PCL) |
|
|
57 | (1) |
|
2.4.5 Poly(p-Dioxanone) (PDO) |
|
|
57 | (1) |
|
2.4.6 Poly(Trimethylene Carbonate) (PTMC) |
|
|
58 | (1) |
|
2.4.7 Poly-β-Hydroxybutyrate (PHB) |
|
|
58 | (1) |
|
2.4.8 Poly(Glycerol Sebacic Acid) (PGS) |
|
|
58 | (1) |
|
2.4.9 Poly(Propylene Fumarate) (PPF) |
|
|
59 | (1) |
|
2.4.10 Poly(Anhydrides) (PAs) |
|
|
60 | (1) |
|
2.4.11 Poly(Orthoesters) (POEs) |
|
|
60 | (1) |
|
|
61 | (1) |
|
2.4.13 Poly(Vinyl Alcohol) (PVA) |
|
|
62 | (1) |
|
2.4.14 Poly(Hydroxyalkanoates) (PHAs) |
|
|
63 | (1) |
|
2.4.15 Poly(Ester Amides) (PEAs) |
|
|
63 | (1) |
|
|
64 | (1) |
|
2.6 Exceptional Properties of Biopolymers |
|
|
65 | (1) |
|
|
65 | (6) |
|
|
66 | (1) |
|
2.7.2 Poly(Lactic Acid) (PLA) |
|
|
67 | (1) |
|
|
67 | (1) |
|
2.7.4 Polycaprolactone (PCL) |
|
|
68 | (1) |
|
2.7.5 Poly(2-Hydroxyethyl Methacrylate) (PHEMA) |
|
|
68 | (1) |
|
2.7.6 Carbohydrate-Based Vaccines |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
2.7.10 Hyaluronic Acid (HA) |
|
|
70 | (1) |
|
2.7.11 Chondroitin Sulfate (CS) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (1) |
|
2.10 Applications of Biopolymers |
|
|
72 | (8) |
|
2.10.1 Medical Applications |
|
|
72 | (1) |
|
2.10.1.1 Surgical Sutures |
|
|
72 | (1) |
|
2.10.1.2 Bone Fixation Devices |
|
|
73 | (1) |
|
|
73 | (1) |
|
2.10.1.4 Adhesion Prevention |
|
|
74 | (1) |
|
|
74 | (1) |
|
2.10.1.6 Drug Delivery Systems |
|
|
74 | (1) |
|
2.10.1.7 Artificial Corneas |
|
|
75 | (1) |
|
2.10.1.8 Artificial Blood Vessels |
|
|
75 | (1) |
|
2.10.2 Agricultural Applications |
|
|
76 | (1) |
|
2.10.2.1 Agricultural Mulches |
|
|
76 | (1) |
|
2.10.2.2 Controlled Release of Agricultural Chemicals |
|
|
77 | (1) |
|
2.10.2.3 Agricultural Planting Containers |
|
|
77 | (1) |
|
|
77 | (1) |
|
2.10.3.1 Starch-Based Packaging Materials |
|
|
78 | (1) |
|
2.10.3.2 PLA-Based Packaging Materials |
|
|
78 | (1) |
|
2.10.3.3 Cellulose-Based Packaging Materials |
|
|
79 | (1) |
|
2.10.3.4 Pullulan-Based Packaging Materials |
|
|
79 | (1) |
|
2.10.3.5 Other Biopackaging Solution |
|
|
80 | (1) |
|
2.11 Partially Biodegradable Packaging Materials |
|
|
80 | (1) |
|
2.12 Nonbiodegradable Biopolymers |
|
|
80 | (2) |
|
|
80 | (1) |
|
2.12.1.1 Poly(3-Mercaptopropionate) (Poly(3MP)) |
|
|
81 | (1) |
|
2.13 Conversion of Nonbiodegradable to Biodegradable Polymers |
|
|
82 | (1) |
|
2.14 Current Research Areas in Biopolymers and Bioplastics |
|
|
82 | (1) |
|
2.15 General Findings and Future Prospects |
|
|
83 | (26) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (25) |
|
3 Preparation, Microstructure, and Properties of Biofibers |
|
|
109 | (24) |
|
|
|
109 | (1) |
|
3.2 Structure of Natural Plant Fibers |
|
|
110 | (7) |
|
|
110 | (4) |
|
|
114 | (3) |
|
3.3 Ultimate Properties of Natural Fibers |
|
|
117 | (4) |
|
|
117 | (3) |
|
|
120 | (1) |
|
3.4 Mechanical and Thermal Properties of Cellulose Microfibrils and Macrofibrils |
|
|
121 | (5) |
|
3.5 All-Cellulose Composites and Nanocomposites |
|
|
126 | (3) |
|
|
129 | (4) |
|
|
129 | (4) |
|
4 Surface Treatment and Characterization of Natural Fibers: Effects on the Properties of Biocomposites |
|
|
133 | (46) |
|
|
|
|
|
133 | (1) |
|
4.2 Why Is Surface Treatment of Natural Fibers Important in Biocomposites? |
|
|
134 | (3) |
|
4.3 What Are the Surface Treatment Methods of Natural Fibers? |
|
|
137 | (12) |
|
4.3.1 Chemical Treatment Methods |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (4) |
|
4.3.1.3 Acetylation Treatment |
|
|
143 | (1) |
|
4.3.1.4 Benzoylation and Benzylation Treatments |
|
|
143 | (1) |
|
|
143 | (1) |
|
4.3.1.6 Peroxide Treatment |
|
|
144 | (1) |
|
4.3.2 Physical Treatment Methods |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
4.3.2.3 Electron Beam Treatment |
|
|
147 | (1) |
|
4.3.2.4 Ultraviolet Treatment |
|
|
147 | (1) |
|
4.3.2.5 Ultrasonic Treatment |
|
|
148 | (1) |
|
4.4 How Does the Surface Treatment Influence the Properties of Biocomposites? |
|
|
149 | (19) |
|
4.4.1 Chemical Changes of Natural Fibers |
|
|
149 | (1) |
|
4.4.2 Morphological and Structural Changes of Natural Fibers |
|
|
150 | (1) |
|
4.4.3 Mechanical Changes of Natural Fibers |
|
|
151 | (2) |
|
4.4.4 Interfacial Properties of Biocomposites |
|
|
153 | (4) |
|
4.4.5 Mechanical Properties of Biocomposites |
|
|
157 | (3) |
|
4.4.6 Impact Properties of Biocomposites |
|
|
160 | (1) |
|
4.4.7 Dynamic Mechanical Properties of Biocomposites |
|
|
161 | (3) |
|
4.4.8 Thermal Properties of Biocomposites |
|
|
164 | (2) |
|
4.4.9 Water Absorption Behavior of Biocomposites |
|
|
166 | (2) |
|
|
168 | (11) |
|
|
169 | (10) |
|
5 Manufacturing and Processing Methods of Biocomposites |
|
|
179 | (34) |
|
5.1 Processing Technology of Natural Fiber-Reinforced Thermoplastic Composite |
|
|
179 | (18) |
|
|
|
179 | (2) |
|
5.1.2 NF-Reinforced PLA Resin Composite Material |
|
|
181 | (1) |
|
5.1.3 Pellet Production Technology of Continuation Fiber-Reinforced Thermoplastic Resin Composite Material |
|
|
181 | (2) |
|
5.1.4 Pellet Manufacturing Technology of the Continuous Natural Fiber--Reinforced Thermoplastic Resin Composite Material |
|
|
183 | (1) |
|
|
183 | (1) |
|
5.1.4.2 Review of Mechanical Apparatus |
|
|
183 | (2) |
|
|
185 | (1) |
|
|
186 | (2) |
|
5.1.4.5 Mechanical Properties of NF-LFP |
|
|
188 | (1) |
|
5.1.5 Pellet Manufacturing Technology of the Distributed Type Natural Fiber--Reinforced Thermoplastic Resin Composites |
|
|
189 | (1) |
|
5.1.5.1 Process Development |
|
|
189 | (2) |
|
5.1.5.2 Automatic Material-Supplying System |
|
|
191 | (2) |
|
5.1.5.3 Optimal Screw Configuration and Influence of BF Fiber Diameter |
|
|
193 | (2) |
|
5.1.5.4 Influence of BF Content |
|
|
195 | (2) |
|
|
197 | (1) |
|
5.2 Processing Technology of Wood Plastic Composite (WPC) |
|
|
197 | (16) |
|
|
|
198 | (1) |
|
5.2.1.1 Manufacture of Woody Materials |
|
|
198 | (4) |
|
|
202 | (1) |
|
|
202 | (1) |
|
5.2.2 Compounding Process |
|
|
203 | (1) |
|
5.2.2.1 Compounding Using an Extrusion Machine |
|
|
203 | (1) |
|
5.2.2.2 Compounding Using a Henschel Type Mixer |
|
|
204 | (1) |
|
5.2.2.3 Evaluation of Compounds |
|
|
205 | (2) |
|
|
207 | (1) |
|
5.2.3.1 Extrusion Molding |
|
|
207 | (1) |
|
5.2.3.2 Injection Molding |
|
|
208 | (1) |
|
5.2.4 The Future Outlook for WPC in Industry |
|
|
209 | (1) |
|
|
209 | (4) |
|
6 Biofiber-Reinforced Thermoset Composites |
|
|
213 | (26) |
|
|
|
|
|
213 | (1) |
|
6.2 Materials and Fabrication Techniques |
|
|
213 | (7) |
|
6.2.1 Thermosetting Resins |
|
|
213 | (1) |
|
6.2.1.1 Synthetic Thermosets |
|
|
214 | (1) |
|
6.2.1.2 Biosynthetic Thermosets |
|
|
215 | (1) |
|
|
215 | (2) |
|
6.2.3 Fabrication Techniques |
|
|
217 | (1) |
|
|
218 | (1) |
|
6.2.3.2 Compression Molding |
|
|
219 | (1) |
|
|
219 | (1) |
|
|
219 | (1) |
|
6.2.3.5 Resin Transfer Molding |
|
|
220 | (1) |
|
6.3 Biofiber-Reinforced Synthetic Thermoset Composites |
|
|
220 | (5) |
|
6.3.1 Polyester-Based Composites |
|
|
220 | (2) |
|
6.3.2 Epoxy-Based Composites |
|
|
222 | (1) |
|
6.3.3 Vinyl Ester-Based Composites |
|
|
223 | (1) |
|
6.3.4 Phenolic Resin-Based Composites |
|
|
224 | (1) |
|
6.3.5 Other Thermoset-Based Composites |
|
|
225 | (1) |
|
6.4 Biofiber-Reinforced Biosynthetic Thermoset Composites |
|
|
225 | (6) |
|
6.4.1 Lignin-Based Composites |
|
|
225 | (1) |
|
6.4.2 Protein-Based Composites |
|
|
226 | (1) |
|
6.4.3 Tannin-Based Composites |
|
|
227 | (1) |
|
6.4.4 Triglyceride-Based Composites |
|
|
228 | (1) |
|
6.4.5 Other Thermoset-Based Composites |
|
|
229 | (2) |
|
6.5 End-of-Life Treatment of NFR Thermoset Composites |
|
|
231 | (2) |
|
6.5.1 Recycling as Composite Fillers |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (6) |
|
|
234 | (5) |
|
7 Biofiber-Reinforced Thermoplastic Composites |
|
|
239 | (50) |
|
|
|
|
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (7) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (2) |
|
|
244 | (1) |
|
|
244 | (1) |
|
7.3.2 Perennial Biofibers (Wood Fibers) |
|
|
245 | (1) |
|
7.3.2.1 Tree Plantation Products |
|
|
245 | (1) |
|
7.3.2.2 Forest Plant Products |
|
|
246 | (1) |
|
7.3.2.3 Agro-Forestry Products |
|
|
246 | (2) |
|
7.4 Advantages of Biofibers |
|
|
248 | (1) |
|
7.5 Disadvantages of Biofibers |
|
|
248 | (2) |
|
7.6 Graft Copolymerization of Biofibers |
|
|
250 | (2) |
|
7.7 Surface Modifications of Biofibers Using Bacterial Cellulose |
|
|
252 | (3) |
|
7.8 Applications of Biofibers as Reinforcement |
|
|
255 | (16) |
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (1) |
|
7.8.2 Biofiber-Reinforced Thermoplastic Composites |
|
|
259 | (1) |
|
7.8.2.1 Bamboo Fiber-Reinforced Thermoplastics |
|
|
259 | (1) |
|
7.8.2.2 Ramie Fiber-Reinforced Thermoplastics |
|
|
260 | (1) |
|
7.8.2.3 Flax Fiber-Reinforced Thermoplastics |
|
|
261 | (3) |
|
7.8.2.4 Sisal Fiber-Reinforced Thermoplastics |
|
|
264 | (2) |
|
7.8.2.5 Jute Fiber Reinforced-Thermoplastics |
|
|
266 | (3) |
|
7.8.2.6 Hemp Fiber-Reinforced Thermoplastics |
|
|
269 | (2) |
|
7.9 Biofiber Graft Copolymers Reinforced Thermoplastic Composites |
|
|
271 | (3) |
|
7.10 Bacterial Cellulose and Bacterial Cellulose-Coated, Biofiber-Reinforced, Thermoplastic Composites |
|
|
274 | (3) |
|
7.11 Applications of Biofiber-Reinforced Thermoplastic Composites |
|
|
277 | (1) |
|
|
278 | (11) |
|
|
279 | (10) |
|
8 Biofiber-Reinforced Natural Rubber Composites |
|
|
289 | (28) |
|
Parambath Madhom Sreekumar |
|
|
|
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (2) |
|
|
292 | (1) |
|
8.5 Biofiber-Reinforced Rubber Composites |
|
|
292 | (15) |
|
8.5.1 Cure Characteristics |
|
|
293 | (1) |
|
8.5.2 Mechanical Properties |
|
|
294 | (1) |
|
8.5.2.1 Effect of Fiber Length |
|
|
294 | (1) |
|
8.5.2.2 Effect of Fiber Orientation |
|
|
295 | (1) |
|
8.5.2.3 Effect of Fiber Loading |
|
|
296 | (4) |
|
8.5.3 Viscoelastic Properties |
|
|
300 | (2) |
|
8.5.4 Diffusion and Swelling Properties |
|
|
302 | (2) |
|
8.5.5 Dielectric Properties |
|
|
304 | (1) |
|
8.5.6 Rheological and Aging Characteristics |
|
|
305 | (2) |
|
8.6 Approaches to Improve Fiber--Matrix Adhesion |
|
|
307 | (5) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
309 | (3) |
|
|
312 | (1) |
|
|
312 | (5) |
|
|
312 | (5) |
|
9 Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Microfibrillated Cellulose |
|
|
317 | (14) |
|
|
|
|
317 | (1) |
|
|
318 | (2) |
|
|
318 | (1) |
|
|
318 | (1) |
|
9.2.3 Microfibrillated cellulose (MFC) |
|
|
319 | (1) |
|
|
320 | (2) |
|
9.3.1 Fabrication Procedure of Developed Composite Using PLA, BF, and MFC (PLA/BF/MFC Composite) |
|
|
320 | (1) |
|
9.3.2 Three-Point Bending Test |
|
|
321 | (1) |
|
|
321 | (1) |
|
9.3.4 Fracture Toughness Test |
|
|
321 | (1) |
|
9.3.5 Bamboo Fiber Embedded Test |
|
|
322 | (1) |
|
9.4 Results and Discussion |
|
|
322 | (6) |
|
9.4.1 Internal State of PLA/BF/MFC Composite |
|
|
322 | (1) |
|
9.4.2 Bending Strength of PLA/BF/MFC Composite |
|
|
322 | (3) |
|
9.4.3 Fracture Toughness of PLA/BF/MFC Composite |
|
|
325 | (1) |
|
9.4.4 Crack Propagation Behavior |
|
|
325 | (3) |
|
|
328 | (3) |
|
|
328 | (1) |
|
|
328 | (3) |
|
|
331 | (31) |
|
10.1 Elastic Properties of Twisted Yarn Biocomposites |
|
|
331 | (14) |
|
|
|
|
331 | (1) |
|
10.1.2 Classical Theories of Yarn Elastic Modulus |
|
|
332 | (3) |
|
10.1.3 Orthotropic Theory for Twisted Yarn-Reinforced Composites |
|
|
335 | (1) |
|
10.1.3.1 Yarn Modulus Based on Orthotropic Theory |
|
|
335 | (3) |
|
10.1.3.2 Relation between Mechanical Properties and Twist Angle |
|
|
338 | (3) |
|
10.1.3.3 Extension of Theory to Off-Axis Loading |
|
|
341 | (3) |
|
|
344 | (1) |
|
10.2 Fabrication Process for Textile Biocomposites |
|
|
345 | (17) |
|
|
|
|
345 | (1) |
|
10.2.2 Intermediate Materials for Continuous Natural Fiber-Reinforced Thermoplastic Composites |
|
|
345 | (4) |
|
10.2.3 Braid-Trusion of Jute/Polylactic Acid Composites |
|
|
349 | (1) |
|
|
349 | (4) |
|
|
353 | (3) |
|
10.2.3.3 Results and Discussion |
|
|
356 | (2) |
|
|
358 | (1) |
|
|
358 | (4) |
|
|
362 | (69) |
|
|
|
|
|
|
|
361 | (1) |
|
|
362 | (57) |
|
11.2.1 Bionanocomposite Classification |
|
|
362 | (1) |
|
11.2.1.1 Particulate Bionanocomposites |
|
|
363 | (1) |
|
11.2.1.2 Elongated Particle Bionanocomposites |
|
|
363 | (1) |
|
11.2.1.3 Layered Particle-Reinforced Bionanocomposites |
|
|
363 | (1) |
|
11.2.2 Reinforcements Used in Bionanocomposites |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
365 | (3) |
|
11.2.2.3 Chitin and Chitosan |
|
|
368 | (1) |
|
11.2.3 Matrices for Bionanocomposites |
|
|
369 | (1) |
|
|
370 | (5) |
|
11.2.3.2 Biodegradable Polymers from Microorganisms and Biotechnology |
|
|
375 | (2) |
|
11.2.3.3 Biodegradable Polymers from Petrochemical Products |
|
|
377 | (3) |
|
11.2.4 Mixing, Processing, and Characterization of Bionanocomposites |
|
|
380 | (1) |
|
|
380 | (1) |
|
|
381 | (1) |
|
11.2.4.3 Characterization |
|
|
382 | (1) |
|
11.2.5 Polysaccharide Bionanocomposites |
|
|
383 | (1) |
|
11.2.5.1 Starch Bionanocomposites |
|
|
383 | (4) |
|
11.2.5.2 Chitin Bionanocomposites |
|
|
387 | (1) |
|
11.2.5.3 Chitosan Bionanocomposites |
|
|
388 | (3) |
|
11.2.6 Protein Bionanocomposites |
|
|
391 | (1) |
|
11.2.6.1 Soy Protein Isolate |
|
|
392 | (3) |
|
|
395 | (2) |
|
|
397 | (1) |
|
11.2.6.4 Other Protein-Based Bionanocomposites |
|
|
398 | (1) |
|
11.2.7 Bionanocomposites Using Biodegradable Polymers from Microorganisms and Biotechnology |
|
|
399 | (1) |
|
11.2.7.1 Polyhydroxyalkanoates |
|
|
399 | (5) |
|
|
404 | (2) |
|
11.2.8 Bionanocomposites Using Biodegradable Polymers from Petrochemical Products |
|
|
406 | (1) |
|
11.2.8.1 Poly(ε-Caprolactone) |
|
|
406 | (5) |
|
|
411 | (1) |
|
11.2.8.3 Aliphatic and Aromatic Polyesters and Their Copolymers |
|
|
412 | (4) |
|
11.2.9 Other Biodegradable Polymers |
|
|
416 | (1) |
|
11.2.9.1 Poly(Vinyl Alcohol) |
|
|
416 | (1) |
|
11.2.9.2 Poly(Vinyl Acetate) |
|
|
417 | (1) |
|
11.2.9.3 Poly(Glycolic Acid) |
|
|
418 | (1) |
|
|
419 | (12) |
|
|
420 | (11) |
|
12 Fully Biodegradable "Green" Composites |
|
|
431 | (34) |
|
|
|
|
431 | (3) |
|
12.2 Soy Protein-Based Green Composites |
|
|
434 | (7) |
|
|
434 | (1) |
|
12.2.2 Fiber/Soy Protein Interfacial Properties |
|
|
435 | (2) |
|
12.2.3 Effect of Soy Protein Modification on the Properties of Resins and Composites |
|
|
437 | (1) |
|
12.2.3.1 Effect of Phytagel® Addition |
|
|
437 | (2) |
|
12.2.3.2 Effect of Stearic Acid Modification |
|
|
439 | (2) |
|
12.3 Starch-Based Green Composites |
|
|
441 | (9) |
|
|
441 | (1) |
|
|
442 | (1) |
|
12.3.2.1 Studies on Fiber Treatment |
|
|
442 | (1) |
|
12.3.2.2 Relationship between NaOH Concentration and Cellulose |
|
|
442 | (2) |
|
12.3.2.3 Effect of NaOH Treatment of Ramie Yarns on the Tensile Properties of Starch-Based Green Composites |
|
|
444 | (2) |
|
12.3.3 Cellulose Nanofiber-Reinforced "Green" Composites |
|
|
446 | (1) |
|
12.3.4 Evaluation of Mechanical Properties of Green Composites |
|
|
447 | (3) |
|
12.4 Biodegradation of "Green" Composites |
|
|
450 | (15) |
|
12.4.1 Biodegradation of PHBV |
|
|
451 | (4) |
|
12.4.2 Effect of Soy Protein Modification on Its Biodegradation |
|
|
455 | (3) |
|
12.4.3 Biodegradation of Starch-Based Green Composites |
|
|
458 | (2) |
|
|
460 | (5) |
|
13 Applications and Future Scope of "Green" Composites |
|
|
465 | (18) |
|
|
|
|
|
|
|
|
465 | (2) |
|
13.1.1 Biodegradable Plastics versus Traditional Plastics |
|
|
466 | (1) |
|
13.2 Applications of Biocomposites (Products/Applications/Market) |
|
|
467 | (9) |
|
13.2.1 Survey of Technical Applications of Natural Fiber Composites |
|
|
467 | (1) |
|
13.2.1.1 The International Trend in Biocomposites |
|
|
468 | (1) |
|
13.2.2 Automotive Applications |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
13.2.2.3 Market and Products |
|
|
471 | (1) |
|
13.2.3 Structural Applications |
|
|
472 | (1) |
|
13.2.3.1 Materials for Structural Applications of Green Composites |
|
|
473 | (1) |
|
|
473 | (3) |
|
|
476 | (2) |
|
13.3.1 Choice of Materials and Processing Methods |
|
|
477 | (1) |
|
|
478 | (5) |
|
|
479 | (4) |
|
14 Biomedical Polymer Composites and Applications |
|
|
483 | (32) |
|
|
|
483 | (2) |
|
14.2 Biocompatibility Issues |
|
|
485 | (3) |
|
14.3 Natural Matrix Based Polymer Composites |
|
|
488 | (6) |
|
14.3.1 Silk Biocomposites |
|
|
488 | (1) |
|
14.3.2 Chitin and Chitosan as Matrices |
|
|
489 | (1) |
|
14.3.3 Mammal Protein-Based Biocomposites |
|
|
490 | (1) |
|
14.3.4 Hyaluronic Acid Composites |
|
|
491 | (2) |
|
14.3.5 Other Natural Polymer Matrices |
|
|
493 | (1) |
|
14.4 Synthetic Polymer Matrix Biomedical Composites |
|
|
494 | (8) |
|
14.4.1 Biodegradable Polymer Matrices |
|
|
495 | (4) |
|
14.4.2 Synthetic Polymer Composites |
|
|
499 | (1) |
|
14.4.2.1 Orthopedic Applications |
|
|
499 | (1) |
|
14.4.2.2 Dental Applications |
|
|
500 | (2) |
|
14.4.2.3 Other Tissue Engineering Applications |
|
|
502 | (1) |
|
14.5 Smart Polymers and Biocomposites |
|
|
502 | (2) |
|
14.6 Polymer-Nanosystems and Nanocomposites in Medicine |
|
|
504 | (2) |
|
|
506 | (1) |
|
|
507 | (8) |
|
|
507 | (8) |
|
15 Environmental Effects, Biodegradation, and Life Cycle Analysis of Fully Biodegradable "Green" Composites |
|
|
515 | (54) |
|
Ajalesh Balachandran Nair |
|
|
Palanisamy Sivasubramanian |
|
|
|
Kurungattu Arjunan Nair Ajith Kumar |
|
|
Meyyarappallil Sadasivan Sreekala |
|
|
|
515 | (3) |
|
15.2 Environmental Aspects |
|
|
518 | (2) |
|
15.3 Environmental Impacts of Green Composite Materials |
|
|
520 | (1) |
|
15.4 Choice of Impact Categories |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
521 | (1) |
|
15.5 Environmental Impact of Polylactide |
|
|
522 | (1) |
|
15.6 Environmental Effect of Polyvinyl Alcohol (PVA) |
|
|
523 | (3) |
|
15.7 Potential Positive Environmental Impacts |
|
|
526 | (1) |
|
|
526 | (1) |
|
15.7.2 Landfill Degradation |
|
|
526 | (1) |
|
|
526 | (1) |
|
15.8 Potential Negative Environmental Impacts |
|
|
526 | (3) |
|
15.8.1 Pollution of Aquatic Environments |
|
|
527 | (1) |
|
15.8.1.1 Increased Aquatic BOD |
|
|
527 | (1) |
|
15.8.1.2 Water Transportable Degradation Products |
|
|
527 | (1) |
|
15.8.1.3 Risk to Marine Species |
|
|
528 | (1) |
|
|
528 | (1) |
|
15.8.2.1 Determination of Appropriate Disposal Environments |
|
|
528 | (1) |
|
15.8.2.2 Role of the Built Environment |
|
|
529 | (1) |
|
|
529 | (3) |
|
15.9.1 Biodegradability Test |
|
|
530 | (1) |
|
15.9.1.1 Natural Soil Burial Test and Simulated Municipal Solid Waste (MSW) Aerobic Compost Test |
|
|
530 | (1) |
|
15.9.1.2 Mechanical Property and Weight Loss Tests after Biodegradability |
|
|
530 | (1) |
|
15.9.1.3 Microbial Counts in Natural and Compost Soil |
|
|
531 | (1) |
|
15.9.1.4 Molecular Weight after Biodegradability |
|
|
531 | (1) |
|
15.9.1.5 Differential Scanning Calorimetry (DSC) Analysis |
|
|
531 | (1) |
|
15.9.1.6 FTIR-ATR Analysis |
|
|
532 | (1) |
|
15.9.1.7 Morphological Test |
|
|
532 | (1) |
|
15.10 Advantages of Green Composites over Traditional Composites |
|
|
532 | (1) |
|
15.11 Disadvantages of Green Composites |
|
|
532 | (1) |
|
15.12 Application and End-Uses |
|
|
532 | (2) |
|
|
533 | (1) |
|
15.12.2 Aircrafts and Ships |
|
|
533 | (1) |
|
|
533 | (1) |
|
15.12.4 Decorative Purposes |
|
|
534 | (1) |
|
|
534 | (1) |
|
15.13 Biodegradation of Polyvinyl Alcohol (PVA) under Different Environmental Conditions |
|
|
534 | (2) |
|
15.13.1 Biodegradation of Polyvinyl Alcohol under Composting Conditions |
|
|
535 | (1) |
|
15.13.2 Biodegradation of Polyvinyl Alcohol in Soil Environment |
|
|
535 | (1) |
|
15.13.3 Anaerobic Biodegradation of Polyvinyl Alcohol in Aqueous Environments |
|
|
536 | (1) |
|
15.14 Biodegradation of Polylactic Acid |
|
|
536 | (1) |
|
15.15 Biodegradation of Polylactic Acid and Its Composites |
|
|
537 | (2) |
|
15.16 Biodegradation of Cellulose |
|
|
539 | (1) |
|
15.17 Cellulose Fiber-Reinforced Starch Biocomposites |
|
|
539 | (2) |
|
15.18 Life Cycle Assessment (LCA) |
|
|
541 | (5) |
|
|
542 | (1) |
|
15.18.2 Green Design Metrics |
|
|
543 | (2) |
|
|
545 | (1) |
|
15.19 Life Cycle Assessment Results |
|
|
546 | (2) |
|
15.20 Green Principles Assessment Results |
|
|
548 | (1) |
|
|
548 | (3) |
|
15.22 Life Cycle Inventory Analysis of Green Composites |
|
|
551 | (5) |
|
|
551 | (1) |
|
|
552 | (1) |
|
15.22.3 Life Cycle Analysis of Polylactide (PLA) |
|
|
552 | (4) |
|
15.23 Life Cycle Analysis of Poly(hydroxybutyrate) |
|
|
556 | (1) |
|
15.24 Life Cycle Analysis of Cellulose Fibers |
|
|
556 | (2) |
|
|
558 | (11) |
|
|
559 | (2) |
|
|
561 | (8) |
Index |
|
569 | |