Atjaunināt sīkdatņu piekrišanu

E-grāmata: Polynomial Methods and Incidence Theory

(Bernard M. Baruch College, City University of New York)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The past decade has seen numerous major mathematical breakthroughs for topics such as the finite field Kakeya conjecture, the cap set conjecture, Erdos's distinct distances problem, the joints problem, as well as others, thanks to the introduction of new polynomial methods. There has also been significant progress on a variety of problems from additive combinatorics, discrete geometry, and more. This book gives a detailed yet accessible introduction to these new polynomial methods and their applications, with a focus on incidence theory. Based on the author's own teaching experience, the text requires a minimal background, allowing graduate and advanced undergraduate students to get to grips with an active and exciting research front. The techniques are presented gradually and in detail, with many examples, warm-up proofs, and exercises included. An appendix provides a quick reminder of basic results and ideas.

This is a detailed introduction to the new polynomial methods responsible for numerous major mathematical breakthroughs in the past decade. It requires a minimal background and includes many examples, warm-up proofs, and exercises, allowing graduate and advanced undergraduate students to get to grips with an active and exciting research front.

Recenzijas

'This book gives a very nice introduction to the areas of incidence geometry and the polynomial method Since this area of mathematics is still rather young, the book contains many open problems - this helps to bring the reader to the front of research. Furthermore, each chapter is followed by a generous amount of exercises.' Audie Warren, zbMATH Open

Papildus informācija

A thorough yet accessible introduction to the mathematical breakthroughs achieved by using new polynomial methods in the past decade.
Introduction;
1. Incidences and classical discrete geometry;
2. Basic
real algebraic geometry in R^2;
3. Polynomial partitioning;
4. Basic real
algebraic geometry in R^d;
5. The joints problem and degree reduction;
6.
Polynomial methods in finite fields;
7. The ElekesSharirGuthKatz
framework;
8. Constant-degree polynomial partitioning and incidences in C^2;
9. Lines in R^3;
10. Distinct distances variants;
11. Incidences in R^d;
12.
Incidence applications in R^d;
13. Incidences in spaces over finite fields;
14. Algebraic families, dimension counting, and ruled surfaces; Appendix.
Preliminaries; References; Index.
Adam Sheffer is Mathematics Professor at CUNY's Baruch College and the CUNY Graduate Center. Previously, he was a postdoctoral researcher at the California Institute of Technology. Sheffer's research work is focused on polynomial methods, discrete geometry, and additive combinatorics.