Atjaunināt sīkdatņu piekrišanu

Portfolio Theory and Arbitrage: A Course in Mathematical Finance [Hardback]

  • Formāts: Hardback, 309 pages, height x width: 254x178 mm
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 01-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460149
  • ISBN-13: 9781470460143
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 147,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 309 pages, height x width: 254x178 mm
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 01-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460149
  • ISBN-13: 9781470460143
Citas grāmatas par šo tēmu:
This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called ""Kelly"" or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization.

The book contains a considerable amount of new research and results, as well as a significant number of exercises. It can be used as a basic text for graduate courses in Probability and Stochastic Analysis, and in Mathematical Finance. No prior familiarity with finance is required, but it is assumed that readers have a good working knowledge of real analysis, measure theory, and of basic probability theory. Familiarity with stochastic analysis is also assumed, as is integration with respect to continuous semimartingales.
The market
Numeraires and market viability
Financing optimization maximality
Ramifications and extensions
Elements of functional and convex analysis
Bibliography
Index