Atjaunināt sīkdatņu piekrišanu

E-grāmata: Potential Analysis of Stable Processes and its Extensions

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 1980
  • Izdošanas datums: 14-Jul-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642021411
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 1980
  • Izdošanas datums: 14-Jul-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642021411
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and FeynmanKac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case.



This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a CNRS/HARP Workshop, Angers 2006.



The reader will gain insight into the modern theory of stable and related processes and their potential analysis with a theoretical motivation for the study of their fine properties.

Recenzijas

From the reviews:

The book is a collection of articles on all aspects of the potential theory of stable processes on Rd, written by well-known experts in this field, thereby summarizing recent results in various papers in a unified presentation. readers interested in the subject will find this book extremely helpful. (Wilhelm Stannat, Mathematical Reviews, Issue 2011 i)

Recently, a lot of progress has been made in the potential theory of stable processes and related Lévy processes. This book is a collection of surveys on some of these recent results made into a book form. This book should be very useful for researchers and graduate students to read the recent progress in the potential theory of stable processes and their generalizations. (Renming Song, Zentralblatt MATH, Vol. 1203, 2011)

Boundary Potential Theory for Schr#x00F6;dinger Operators Based on
Fractional Laplacian.- Nontangential Convergence for #x03B1;-harmonic
Functions.- Eigenvalues and Eigenfunctions for Stable Processes.- Potential
Theory of Subordinate Brownian Motion.