Atjaunināt sīkdatņu piekrišanu

E-grāmata: Power Plant Synthesis

  • Formāts - PDF+DRM
  • Cena: 66,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Power Plant Synthesis provides an integrated approach to the operation, analysis, simulation, and dimensioning of power plants for electricity and thermal energy production. Fundamental concepts of energy and power, energy conversion, and power plant design are first presented, and integrated approaches for the operation and simulation of conventional electricity production systems then examined. Hybrid power plants and cogeneration systems are covered, with operating algorithms, optimization, and dimensioning methods explained. The environmental impacts of energy sources are described and compared, with real-life case studies included to show the synthesis of the specific topics covered.

Recenzijas

"As Katsaprakakis makes clear in his preface and first chapter, modern society would be impossible without the large-scale conversion of naturally occurring energy to forms useful to humansprimarily, forms of electricity. After centuries of producing energy from fossil fuels, power plants are now moving toward renewable energy sources (RES), such as wind and solar power. Katsaprakakis acknowledges and embraces this trend in his text, especially through its detailed presentation of "hybrid" installations primarily in and around Europe, which rely on renewables as the primary source and resort to fossil fuels only as backup. Coverage of technologies, economics, and auxiliary topics, such as topography suitable for energy-storage reservoirs and the interpretation of daily usage data, is encyclopedic. Katsaprakakis' consulting experience allows him to give step-by-step design and operation instructions for a variety of actual cases. He writes at a more general level than authors of comparable works, which focus more on technical hardware details. By contrast, Katsaprakakis adopts a more black box or holistic approach. The text is written in a functional and readable style and should be useful especially to practitioners designing new hybrid plants."

K. D. Stephan, Texas State University, USA

Preface xvii
Acknowledgments xix
About the Author xxi
Chapter 1 Introductory Concepts
1(1)
1.1 Energy and Power
1(10)
1.1.1 Energy
1(2)
1.1.2 Power
3(2)
1.1.3 Energy and Power Evolution versus Time
5(2)
1.1.4 Energy and Power Units
7(4)
1.2 Energy Form Classification and Transformation
11(4)
1.2.1 Energy Form Classification
11(2)
1.2.2 Energy Form Transformations
13(2)
1.3 Energy Sources
15(8)
1.3.1 Nonrenewable Energy Sources
15(1)
1.3.1.1 Coal
15(1)
1.3.1.2 Oil
16(1)
1.3.1.3 Natural Gas
16(1)
1.3.1.4 Nuclear Fuels
16(1)
1.3.2 Available Reserves of Nonrenewable Energy Sources
16(4)
1.3.3 Renewable Energy Sources
20(1)
1.3.4 Power Density of Energy Sources
21(1)
1.3.4.1 Upper Heat Capacity
22(1)
1.3.4.2 Lower Heat Capacity
22(1)
1.4 Energy Efficiency and Transformation
23(5)
1.4.1 Energy Efficiency
23(1)
1.4.2 Energy Transformation
23(3)
1.4.3 Average and Instant Efficiency
26(2)
1.5 Efficiency of Transformers Connected in Series and in Parallel
28(3)
1.5.1 Energy Transformers Connected in Series
29(1)
1.5.2 Energy Transformers Connected in Parallel
30(1)
1.6 Conventional and Hybrid Power Plants
31(4)
1.6.1 Conventional Energy Systems
31(2)
1.6.2 "Hybrid" Energy Systems
33(2)
1.7 The Book's Layout
35(1)
Chapter 1 Introductory Concepts
35(1)
Chapter 2 Conventional Power Plants for Electricity Production
36(1)
Chapter 3 Electricity Production Hybrid Power Plants
37(1)
Chapter 4 Hybrid Plants for Thermal Energy Production
37(1)
Chapter 5 Cogeneration Power Plants
38(1)
Chapter 6 Smart Grids
38(1)
Chapter 7 Energy as a Consumptive Product
38(3)
References
39(2)
Chapter 2 Conventional Power Plants for Electricity Production
41(1)
2.1 Electrical Systems
41(1)
2.1.1 Layout of an Electrical System
41(1)
2.1.1.1 Electricity Production Power Plants
41(1)
2.1.1.2 Electricity Grids
42(1)
2.1.1.3 Voltage Sub-Stations
43(1)
2.1.2 Interconnected and Non-Interconnected Electrical Systems
44(2)
2.1.3 Electrical System Security
46(3)
2.1.4 Spinning Reserve
49(2)
2.1.5 RES Power Plants and Dynamic Security of Electrical Systems
51(2)
2.1.6 Electrical System Power Demand
53(3)
2.2 Power Generators
56(27)
2.2.1 Steam Turbines
57(1)
2.2.1.1 Steam Preparation Stage
58(1)
2.2.1.2 Steam Expansion Stage
59(1)
2.2.1.3 Steam Restoration Stage
59(1)
2.2.2 Diesel Generators
60(2)
2.2.3 Gas Turbines
62(1)
2.2.4 Combined Cycles
63(2)
2.2.5 Technical Minimum, Nominal Power, and Efficiency of Thermal Generators
65(3)
2.2.6 Hydro Turbines
68(6)
2.2.7 Nonguaranteed Power Production Units
74(2)
2.2.8 Power Production Generators Dispatch Order
76(2)
2.2.8.1 Steam Turbines
78(1)
2.2.8.2 Diesel Generators
78(1)
2.2.8.3 Gas Turbines
78(1)
2.2.8.4 Combined Cycles
79(1)
2.2.8.5 Nonguaranteed Power Production Units
79(1)
2.2.8.6 Hydro Turbines
79(2)
2.2.9 Spinning Reserve Policy
81(2)
2.3 Power Production Synthesis Examples
83(7)
2.4 Hourly Calculation of an Electrical System
90(7)
2.4.1 Operation with Wind Park Penetration
90(4)
2.4.2 Operation without Wind Parks
94(3)
2.5 Computational Simulation of the Annual Operation of an Electrical System
97(1)
2.6 Computational Simulation of the Annual Operation of Crete's Autonomous Electrical System
98(10)
2.6.1 Crete Power Demand
98(1)
2.6.2 Crete Thermal Power Plants
99(1)
2.6.3 Crete Nonguaranteed Power Production Plants
100(1)
2.6.4 Crete Fuels
101(1)
2.6.5 Crete Simulation Results
102(1)
2.6.5.1 Power Production Synthesis Graphs
102(3)
2.6.5.2 Wind and PV Power Penetration
105(1)
2.6.5.3 Electricity Production, Generator Efficiency, Fuels Consumption, and Costs
106(2)
2.6.5.4 C02 Emissions
108(1)
2.7 Computational Simulation of the Annual Operation of Praslin's Autonomous Electrical System
108(9)
2.7.1 Praslin-La Digue Power Demand
108(1)
2.7.2 Praslin-La Digue Thermal Power Plant
109(2)
2.7.3 Praslin-La Digue Nonguaranteed Power Production Plants
111(1)
2.7.4 Praslin-La Digue Fuels
111(1)
2.7.5 Praslin-La Digue Simulation Results
111(1)
2.7.5.1 Power Production Synthesis Graphs
111(2)
2.7.5.2 Electricity Production, Generator Efficiency, Fuels Consumption, and Costs
113(1)
2.7.5.3 C02 Emissions
114(1)
References
115(2)
Chapter 3 Electricity Production Hybrid Power Plants
117(1)
3.1 The Concept of the Hybrid Power Plant
117(2)
3.2 Classification of Electricity Production Hybrid Power Plants
119(1)
3.3 Technologies for Large-Size Hybrid Power Plants
120(13)
3.3.1 Base Units
121(2)
3.3.2 Storage Units
123(1)
3.3.2.1 Compressed-Air Energy Storage Systems
123(4)
3.3.2.2 Pumped Hydro Storage Systems
127(6)
3.4 Technologies for Small-Size Hybrid Power Plants
133(17)
3.4.1 Renewable Energy Source Units
133(3)
3.4.2 Storage Units
136(1)
3.4.2.1 Electrochemical Batteries
136(7)
3.4.2.2 Fuel Cells
143(6)
3.4.3 Storage Plant Selection for Small-Size Hybrid Power Plants
149(1)
3.5 Operation Algorithms of Large-Size Hybrid Power Plants
150(24)
3.5.1 Hybrid Power Plants for 100% RES Penetration
151(1)
3.5.1.1 PHS Systems as Storage Unit
151(7)
3.5.1.2 CAES Systems as Storage Unit
158(13)
3.5.2 Hybrid Power Plants for Power Peak Shaving
171(3)
3.6 Operation Algorithms of Small-Size Hybrid Power Plants
174(13)
3.6.1 Hybrid Power Plants of Small Size
174(6)
3.6.2 Simulation of an Electrolysis Unit and a Fuel Cell Operation
180(3)
3.6.3 Hybrid Power Plants of Very Small Size
183(4)
3.7 Optimization Criteria for the Dimensioning of Hybrid Power Plants
187(8)
3.7.1 Optimization of Hybrid Power Plants Based on Energy Criteria
187(1)
3.7.2 Dimensioning Optimization of Hybrid Power Plants Based on Economic Criteria
188(1)
3.7.2.1 Optimization of the Investment's Economic Indices
188(3)
3.7.2.2 Minimization of Setup and Operation Costs
191(4)
3.8 Hybrid Power Plant Case Studies
195(40)
3.8.1 A Hybrid Power Plant for the Faroe Islands
196(1)
3.8.1.1 The Aim of the Dimensioning
196(1)
3.8.1.2 Independent Parameters of the Dimensioning
196(1)
3.8.1.3 Required Data
196(1)
3.8.1.4 Building the Power Demand Annual Time Series
196(3)
3.8.1.5 Available RES Potential
199(2)
3.8.1.6 The Proposed Hybrid Power Plant
201(1)
3.8.1.7 Results
202(4)
3.8.2 A Hybrid Power Plant in the Island of Sifnos, Greece
206(1)
3.8.2.1 The Aim of the Dimensioning
206(1)
3.8.2.2 Independent Parameters of the Dimensioning
207(1)
3.8.2.3 Required Data
207(4)
3.8.2.4 Dimensioning Procedure
211(1)
3.8.2.5 Results
212(3)
3.8.3 A Hybrid Power Plant for the Island of Kastelorizo, Greece
215(1)
3.8.3.1 Objective of the Case Study
215(1)
3.8.3.2 Hybrid Power Plant Components
215(1)
3.8.3.3 Dimensioning Parameters and Required Data
216(2)
3.8.3.4 Dimensioning of the Hybrid Power Plant Supported with CAES
218(2)
3.8.3.5 Dimensioning of the Hybrid Power Plant Supported with Electrochemical Storage
220(2)
3.8.4 A Hybrid Power Plant for a Remote Cottage
222(2)
3.8.4.1 The Estimation of the Power Demand
224(2)
3.8.4.2 The Estimation of the Available RES Potential
226(1)
3.8.4.3 Power Production Calculation from the RES Units
226(1)
3.8.4.4 Power Production from the Thermal Generators and Fuel Consumption
227(1)
3.8.4.5 Calculation of the LCC Dimensioning Optimization
228(3)
References
231(4)
Chapter 4 Hybrid Plants for Thermal Energy Production
235(1)
4.1 Introduction
235(1)
4.2 Solar Col lectors
236(1)
4.2.1 Uncovered Solar Collectors
236(2)
4.2.2 Flat-Plate Solar Collectors
238(3)
4.2.3 Vacuum Tube Solar Collectors
241(1)
4.2.4 Concentrating Solar Collectors
242(2)
4.2.4.1 Line-Focus Concentrating Solar Collectors
244(1)
4.2.4.2 Spherical Concentrating Collectors
245(1)
4.2.4.3 Compound Parabolic Collectors
245(1)
4.2.5 Photovoltaic Thermal Hybrid Solar Collectors
246(5)
4.3 Energy Analysis of a Flat-Plate Solar Collector
251(30)
4.3.1 Heat Removal Factor FR
254(2)
4.3.2 Thermal Transmittance Factor U
256(2)
4.3.3 Transmittance-Absorptance Product (x a)
258(3)
4.3.4 Efficiency of Flat-Plate Solar Collector
261(1)
4.3.4.1 Incidence Angle Modifier
262(2)
4.3.4.2 Collector's Time Constant
264(1)
4.3.5 Calculation Procedure of the Thermal Power Production from Flat-Plate Collectors
265(8)
4.3.6 Operation Features of Flat-Plate Solar Collectors
273(3)
4.3.7 Optimum Installation Angle
276(4)
4.3.8 Application for Water-Based Photovoltaic Hybrid Thermal Collectors
280(1)
4.4 Energy Analysis for a Concentrating Solar Collector
281(16)
4.4.1 Total Thermal Transmittance Factor U, for the Heat Losses from the Receiver
281(5)
4.4.2 Thermal Power Production from Concentrating Solar Collectors
286(3)
4.4.3 Solar Radiation Absorptance from Concentrating Solar Collectors
289(1)
4.4.4 Solar Radiation Absorbed from Compound Parabolic Collectors
290(7)
4.5 Thermal Energy Storage
297(7)
4.5.1 Thermal Energy Storage in Water Tanks
298(3)
4.5.2 Stratification Thermal Storage in Water Tanks
301(3)
4.6 Operation Simulation of Thermal Hybrid Power Plants
304(14)
4.6.1 Heat Exchanger Factor
307(2)
4.6.2 Heat Losses from the Hydraulic Network
309(3)
4.6.3 Connection of Solar Collectors In-Parallel and In-Series
312(3)
4.6.4 Thermal Energy Storage in Multiple Storage Tanks
315(3)
4.7 Solar Thermal Power Plants
318(30)
4.7.1 Solar Thermal Power Plant Alternative Technologies
321(1)
4.7.1.1 Parabolic Trough Collector Systems
322(2)
4.7.1.2 Linear Fresnel Reflector Systems
324(3)
4.7.1.3 Power Tower/Central Receiver Systems
327(3)
4.7.1.4 Parabolic Disk Systems
330(2)
4.7.2 Thermal Energy Storage Systems
332(2)
4.7.2.1 Sensible Heat Storage Systems
334(6)
4.7.2.2 Latent Heat Storage Systems
340(3)
4.7.3.3 Thermochemical Heat Storage Systems
343(1)
4.7.4.4 Thermal Energy Storage Integration
344(4)
4.8 Characteristic Case Studies
348(17)
4.8.1 Thermal Hybrid Plant for Swimming Pool Heating
348(8)
4.8.2 Thermal Hybrid Plant for School Building Heating
356(5)
References
361(4)
Chapter 5 Cogeneration Power Plants
365(1)
5.1 Introduction
365(3)
5.2 Basic Categories of Cogeneration Systems
368(5)
5.2.1 Centralized Cogeneration Systems
369(1)
5.2.2 Decentralized Cogeneration Systems
370(3)
5.3 Technologies of Cogeneration Systems
373(14)
5.3.1 Steam Turbine Centralized Cogeneration Systems
374(1)
5.3.1.1 Cogeneration System with a Back-Pressure Steam Turbine
375(1)
5.3.1.2 Cogeneration System with an Extraction Steam Turbine
376(1)
5.3.1.3 Cogeneration System with a Bottoming Cycle Steam Turbine
377(1)
5.3.2 Gas Turbine Cogeneration Systems
377(1)
5.3.2.1 Cogeneration Systems with Open-Cycle Gas Turbines
377(1)
5.3.2.2 Cogeneration Systems with Closed-Cycle Gas Turbines
378(1)
5.3.3 Cogeneration Systems with Reciprocating Engines
379(1)
5.3.3.1 Cogeneration Systems with Otto Gas Engines
380(1)
5.3.3.2 Cogeneration Systems with Diesel Gas Engines
380(1)
5.3.3.3 Cogeneration Systems with Diesel Engines for Electricity Production
381(1)
5.3.4 Cogeneration Systems with Combined Cycles
381(1)
5.3.5 Compact Cogeneration Systems of Small Size
382(1)
5.3.6 Other Types of Cogeneration Systems
383(1)
5.3.6.1 Bottoming Cycles with Organic Fluids
383(1)
5.3.6.2 Fuel Cells
384(1)
5.3.6.3 Cogeneration Systems with Stirling Engines
385(2)
5.4 Efficiency Factors of Cogeneration Systems
387(2)
5.5 Fundamental Thermodynamic Concepts
389(6)
5.5.1 Energetic Analysis
389(1)
5.5.2 The Concept of Exergy
390(1)
5.5.3 The Energetic and Exergetic Analysis of a Thermal Process
391(2)
5.5.4 Analytical Expressions of Exergy Quantities
393(1)
5.5.5 Base Enthalpy and Chemical Exergy of Species
394(1)
5.6 Energetic and Exergetic Analysis of Cogeneration Processes
395(5)
5.7 District Heating and Cooling
400(6)
5.7.1 Fundamental Layout of a District Heating System
401(1)
5.7.1.1 Heat Exchangers
402(1)
5.7.1.2 Expansion Systems
402(1)
5.7.1.3 Circulators
402(1)
5.7.1.4 Pipelines
403(1)
5.7.2 Fundamental Layout of a District Cooling System
403(3)
5.8 District Heating Examples
406(4)
5.8.1 Biomass District Heating in Giissing, Austria
407(1)
5.8.2 Geothermal District Heating in Milan, Italy
408(2)
5.9 A CHP Plant Case Study
410(14)
5.9.1 Location and Climate Conditions
411(1)
5.9.2 Calculation of the Algae Ponds' Heating Loads
412(2)
5.9.3 The CHP Plant Layout
414(1)
5.9.4 The CHP Plant Operation Algorithm
415(4)
5.9.5 Simulation Results
419(5)
5.10 Solar Cooling Systems
424(17)
5.10.1 Trigeneration and Solar Cooling
424(1)
5.10.2 Fundamental Principles of Absorption Cooling
425(3)
5.10.3 Solar Cooling
428(6)
5.10.4 A Solar Cooling Case Study
434(4)
References
438(3)
Chapter 6 Smart Grids
441(1)
6.1 Background
441(3)
6.2 The Concept of Smart Grids
444(2)
6.2.1 Functionalities of Smart Grids
446(3)
6.2.2 Evolution of Smart Grids
449(1)
6.2.3 Smart Grid Conceptual Model
450(3)
6.2.3.1 Customers Domain
453(1)
6.2.3.2 Markets Domain
454(1)
6.2.3.3 Service Providers Domain
455(2)
6.2.3.4 Operations Domain
457(1)
6.2.3.5 Generation Including Distributed Energy Resources Domain
458(1)
6.2.3.6 Transmission Domain
459(2)
6.2.3.7 Distribution Domain
461(1)
6.3 Demand Side Management
462(10)
6.3.1 Consumers' Classification
463(1)
6.3.2 Demand Side Management Strategies
464(1)
6.3.2.1 Load Shifting (Peak Load Shaving)
464(2)
6.3.2.2 Dispersed Power Production
466(1)
6.3.2.3 Load Curtailment
466(1)
6.3.2.4 Energy Efficiency 8
467(1)
6.3.3 Demand Side Management Programs
468(2)
6.3.4 Demand Side Management Benefits
470(1)
6.3.4.1 Bill Savings for Customers Involved in DSM Programs
470(1)
6.3.4.2 Bill Savings for Customers Not Involved in DSM Programs
471(1)
6.3.4.3 Reliability Benefits for All Customers
471(1)
6.3.4.4 Market Performance
471(1)
6.3.4.5 Improved System Security and Performance
471(1)
6.3.4.6 System Expansion
472(1)
6.4 Enabling Technologies for Smart Grids
472(8)
6.4.1 Control Devices and DSM
474(1)
6.4.2 Control Devices and DER
475(1)
6.4.3 Monitoring Systems
476(1)
6.4.3.1 Smart Metering
476(2)
6.4.4 Communication Systems
478(2)
6.5 Smart Grid Benefits
480(2)
6.6 Smart Grid Barriers
482(1)
6.7 Smart Grid Implementation Examples
483(8)
6.7.1 The Smart Grid of Azienda Elettrica di Massagno
483(1)
6.7.2 Duke Energy Carolinas Grid Modernization Projects
484(1)
6.7.3 The Smart Micro-Grid on the Island of Tilos
485(2)
References
487(4)
Chapter 7 Energy as a Consumptive Product
491(1)
7.1 Introduction
491(2)
7.2 Oil and Development
493(1)
7.2.1 Brief Historical Background
493(2)
7.2.2 Effects of Oil Prices on International and National Macro Economies
495(1)
7.2.3 Oil and Development of Local and National Economies
496(3)
7.2.3.1 Iran
499(1)
7.2.3.2 Saudi Arabia
499(1)
7.2.3.3 Kuwait
499(1)
7.2.3.4 Mexico
500(1)
7.2.3.5 Russia
500(1)
7.2.3.6 Nigeria
501(1)
7.2.3.7 Venezuela
501(2)
7.2.3.8 Canada
503(1)
7.2.3.9 United Arab Emirates
503(2)
7.3 Nuclear Energy and Development
505(4)
7.4 Renewable Energy Sources and Development
509(15)
7.4.1 Development of RES Electricity Production Projects in Greece
510(3)
7.4.2 Rational Development of RES Projects and Maximization of Common Benefits
513(1)
7.4.2.1 A Clear, Objective, and Effective Legislation Framework
514(1)
7.4.2.2 Public Rates for Local Municipalities
514(1)
7.4.2.3 Support of Local Entrepreneurship for the Development of RES Projects
515(1)
7.4.2.4 Protection of the Environment, Respect to Existing Domestic and Commercial Activities
515(1)
7.4.2.5 Cultivation of a Positive Common Attitude
516(1)
7.4.3 Examples from RES and Development
516(1)
7.4.3.1 Hydroelectricity in Norway
516(2)
7.4.3.2 Wind Power in Denmark
518(1)
7.4.3.3 RES Penetration in Iceland
518(2)
7.4.3.4 Wind Power in Germany
520(1)
7.4.3.5 Wind Power in United Kingdom
520(1)
7.4.3.6 The Energy Cooperative of Sifnos Island, Greece
521(1)
7.4.3.7 Faroe Islands, 100% Energy Autonomy by 2030
521(3)
7.5 Environmental Impacts from Thermal Power Plants
524(6)
7.5.1 Landscape Degradation
526(1)
7.5.2 Leaks Through the Drilling and Transportation Processes
527(2)
7.5.3 Impacts on Water Resources
529(1)
7.5.4 Acid Deposition
529(1)
7.6 Impacts from the Use of Nuclear Power
530(3)
7.6.1 Nuclear Wastes
531(1)
7.6.2 Risk of a Nuclear Accident
531(1)
7.6.2.1 The Nuclear Accident in Chernobyl
532(1)
7.7 Impacts from Wind Parks and Photovoltaic Stations
533(10)
7.7.1 Visual Impact
534(1)
7.7.2 Noise Emission
535(3)
7.7.3 Impacts on Birds
538(2)
7.7.4 Shadow Flicker
540(1)
7.7.5 Land Occupation
541(1)
7.7.6 Electromagnetic Interference
541(2)
7.8 Impacts from Hydroelectric Power Plants
543(5)
7.8.1 Impacts on Ground
543(1)
7.8.2 Water
544(1)
7.8.3 Fish Fauna
545(1)
7.8.4 Other Fauna
546(1)
7.8.5 Biotope: Flora and Vegetation
546(1)
7.8.6 Landscape
547(1)
7.8.7 Microclimate
548(1)
7.9 Impacts from Geothermal Power Plants
548(7)
7.9.1 Impacts on Air Quality
549(1)
7.9.2 Impacts on Water Resources
549(2)
7.9.3 Geologic Hazard
551(1)
7.9.4 Wastes
552(1)
7.9.5 Noise
552(1)
7.9.6 Biological Resources
552(1)
References
552(3)
Index 555
Dimitris Al. Katsaprakakis holds a Mechanical Engineering degree (1997) and a PhD thesis (2007) from the National Technical University of Athens. He is an Associate Professor in the Mechanical Engineering Department, Technological Educational Institute of Crete. His expertise focuses on wind parks and hybrid power plant development, the development of software tools for the optimization of hybrid power plants dimensioning, the impacts of RES projects on the natural environmental and human activities, and the social attitude towards RES projects applications. He has spearheaded the design and the study of eight hybrid power plants projects in the Greek islands that include wind parks and seawater pumped storage capabilities. Dr. Katzaprakakis has participated in several R&D projects funded by the EU, European/Greek industries and the Greek State, and he is the author of 14 papers in international journals, 2 chapters in international scientific books and more than 30 papers in international and national conferences.