Atjaunināt sīkdatņu piekrišanu
  • Formāts - PDF+DRM
  • Cena: 93,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book guides the reader through power and sample size calculations for a variety of study outcomes and designs and illustrates their implementation in R. It is designed to be used as a learning tool for students as well as a resource for experienced statisticians and investigators.



Power and Sample Size in R guides the reader through power and sample size calculations for a wide variety of study outcomes and designs and illustrates their implementation in R software. It is designed to be used as a learning tool for students as well as a resource for experienced statisticians and investigators.

The book begins by explaining the process of power calculation step by step at an introductory level and then builds to increasingly complex and varied topics. For each type of study design, the information needed to perform a calculation and the factors that affect power are explained. Concepts are explained with statistical rigor but made accessible through intuition and examples. Practical advice for performing sample size and power calculations for real studies is given throughout.

The book demonstrates calculations in R. It is integrated with the companion R package powertools and also draws on and summarizes the capabilities of other R packages. Only a basic proficiency in R is assumed.

Topics include comparison of group means and proportions; ANOVA, including multiple comparisons; power for confidence intervals; multistage designs; linear, logistic and Poisson regression; crossover studies; multicenter, cluster randomized and stepped wedge designs; and time to event outcomes. Chapters are also devoted to designing noninferiority, superiority by a margin and equivalence studies and handling multiple primary endpoints.

By emphasizing statistical thinking about the factors that influence power for different study designs and outcomes as well as providing R code, this book equips the reader with the knowledge and tools to perform their own calculations with confidence.

Key Features:

  • Explains power and sample size calculation for a wide variety of study designs and outcomes
  • Suitable for both students and experienced researchers
  • Highlights key factors influencing power and provides practical tips for designing real studies
  • Includes extensive examples with R code

Preamble
1. Preliminaries
2. Getting started: a first calculation
3. One or two means
4. Hypotheses for different study objectives
5. Analysis of variance for comparing means
6. Proportions: large sample methods
7. Exact methods for proportions
8. Categorical variables
9. Precision and confidence intervals
10. Correlation and linear regression
11. Generalized linear regression
12. Crossover studies
13. Multisite trials
14. Cluster randomized trials: parallel designs
15. Cluster randomized trials: longitudinal designs
16. Time to event outcomes
17. Multiple primary endpoints Bibliography Index

Catherine M. Crespi is Professor in the Department of Biostatistics at the Jonathan and Karin Fielding School of Public Health, University of California Los Angeles. Her areas of specialization include trial design and analysis, multilevel modelling, longitudinal data and multivariate statistics. She is a Fellow of the American Statistical Association and an officer of the International Biometric Society.