Atjaunināt sīkdatņu piekrišanu

E-grāmata: Power System Transients: Theory and Applications, Second Edition

(National Institute of Technology, Gobo-shi, Japan), (Doshisha University, Kyoto, Japan), (Doshisha University, Kyotanabe, Kyoto, Japan), (Tokyo Electric Power Company, Tokyo, Japan), (Ecole Polytechnique Montreal, Canada)
  • Formāts: 600 pages
  • Izdošanas datums: 18-Nov-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498782388
  • Formāts - PDF+DRM
  • Cena: 100,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 600 pages
  • Izdošanas datums: 18-Nov-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498782388

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This new edition covers a wide area from transients in power systemsincluding the basic theory, analytical calculations, EMTP simulations, computations by numerical electromagnetic analysis methods, and field test resultsto electromagnetic disturbances in the field on EMC and control engineering. Not only does it show how a transient on a single-phase line can be explained from a physical viewpoint, but it then explains how it can be solved analytically by an electric circuit theory. Approximate formulas, which can be calculated by a pocket calculator, are presented so that a transient can be analytically evaluated by a simple hand calculation. Since a real power line is three-phase, this book includes a theory that deals with a multi-phase line for practical application. In addition, methods for tackling a real transient in a power system are introduced. This new edition contains three completely revised and updated chapters, as well as two new chapters on grounding and numerical methods.
Preface xv
Authors xix
List of Symbols
xxi
List of Acronyms
xxiii
International Standards xxv
1 Theory of Distributed-Parameter Circuits and Impedance/Admittance Formulas
1(140)
1.1 Introduction
1(1)
1.2 Impedance and Admittance Formulas
2(15)
1.2.1 Conductor Internal Impedance Zi
3(1)
1.2.1.1 Derivation of an Approximate Formula
3(3)
1.2.1.2 Accurate Formula by Schelkunoff
6(2)
1.2.2 Outer-Media Impedance Z0
8(1)
1.2.2.1 Outer-Media Impedance
8(1)
1.2.2.2 Overhead Conductor
9(5)
1.2.2.3 Pollaczek's General Formula for Overhead, Underground, and Overhead/Underground Conductor Systems
14(2)
Problems
16(1)
1.3 Basic Theory of Distributed-Parameter Circuit
17(21)
1.3.1 Partial Differential Equations of Voltages and Currents
17(1)
1.3.2 General Solutions of Voltages and Currents
18(1)
1.3.2.1 Sinusoidal Excitation
18(3)
1.3.2.2 Lossless Line
21(2)
1.3.3 Voltages and Currents on a Semi-Infinite Line
23(1)
1.3.3.1 Solutions of Voltages and Currents
23(1)
1.3.3.2 Waveforms of Voltages and Currents
24(1)
1.3.3.3 Phase Velocity
25(2)
1.3.3.4 Traveling Wave
27(1)
1.3.3.5 Wavelength
28(1)
1.3.4 Propagation Constants and Characteristic Impedance
28(1)
1.3.4.1 Propagation Constants
28(2)
1.3.4.2 Characteristic Impedance
30(2)
1.3.5 Voltages and Currents on a Finite Line
32(1)
1.3.5.1 Short-Circuited Line
32(3)
1.3.5.2 Open-Circuited Line
35(3)
Problems
38(1)
1.4 Multiconductor System
38(19)
1.4.1 Steady-State Solutions
38(3)
1.4.2 Modal Theory
41(1)
1.4.2.1 Eigenvalue Theory
42(3)
1.4.2.2 Modal Theory
45(1)
1.4.2.3 Current Mode
46(1)
1.4.2.4 Parameters in Modal Domain
47(2)
1.4.3 Two-Port Circuit Theory and Boundary Conditions
49(1)
1.4.3.1 Four-Terminal Parameter
49(2)
1.4.3.2 Impedance/Admittance Parameters
51(2)
1.4.4 Modal Distribution of Multiphase Voltages and Currents
53(1)
1.4.4.1 Transformation Matrix
53(1)
1.4.4.2 Modal Distribution
54(2)
Problems
56(1)
1.5 Frequency-Dependent Effect
57(20)
1.5.1 Frequency Dependence of Impedance
57(2)
1.5.2 Frequency-Dependent Parameters
59(1)
1.5.2.1 Frequency Dependence
59(1)
1.5.2.2 Propagation Constant
60(1)
1.5.2.3 Characteristic Impedance
60(4)
1.5.2.4 Transformation Matrix
64(4)
1.5.2.5 Line Parameters in the Extreme Case
68(3)
1.5.3 Time Response
71(1)
1.5.3.1 Time-Dependent Responses
71(1)
1.5.3.2 Propagation Constant: Step Response
72(1)
1.5.3.3 Characteristic Impedance
72(3)
1.5.3.4 Transformation Matrix
75(2)
Problems
77(1)
1.6 Traveling Wave
77(27)
1.6.1 Reflection and Refraction Coefficients
77(2)
1.6.2 Thevenin's Theorem
79(1)
1.6.2.1 Equivalent Circuit of a Semi-Infinite Line
79(1)
1.6.2.2 Voltage and Current Sources at the Sending End
80(1)
1.6.2.3 Boundary Condition at the Receiving End
81(1)
1.6.2.4 Thevenin's Theorem
82(2)
1.6.3 Multiple Reflection
84(4)
1.6.4 Multiconductors
88(1)
1.6.4.1 Reflection and Refraction Coefficients
88(1)
1.6.4.2 Lossless Two-Conductor Systems
88(3)
1.6.4.3 Consideration of Modal Propagation Velocities
91(5)
1.6.4.4 Consideration of Losses in a Two-Conductor System
96(3)
1.6.4.5 Three-Conductor Systems
99(3)
1.6.4.6 Cascaded System Composed of Different Numbers of Conductors
102(1)
Problems
103(1)
1.7 Nonuniform Conductors
104(18)
1.7.1 Characteristic of Nonuniform Conductors
105(1)
1.7.1.1 Nonuniform Conductors
105(3)
1.7.1.2 Difference from Uniform Conductors
108(1)
1.7.2 Impedance and Admittance Formulas
109(1)
1.7.2.1 Finite-Length Horizontal Conductor
109(3)
1.7.2.2 Vertical Conductor
112(3)
1.7.3 Line Parameters
115(1)
1.7.3.1 Finite Horizontal Conductor
115(1)
1.7.3.2 Vertical Conductor
116(2)
1.7.3.3 Nonparallel Conductor
118(3)
Problems
121(1)
1.8 Introduction to EMTP
122(19)
1.8.1 Introduction
122(1)
1.8.1.1 History of Transient Analysis
122(2)
1.8.1.2 Background of the EMTP
124(1)
1.8.1.3 EMTP Development
124(1)
1.8.2 Basic Theory of the EMTP
125(1)
1.8.2.1 Representation of a Circuit Element by a Current Source and Resistance
126(2)
1.8.2.2 Composition of Nodal Conductance
128(2)
1.8.3 Other Circuit Elements
130(1)
Solutions to Problems
130(6)
References
136(5)
2 Transients on Overhead Lines
141(94)
2.1 Introduction
141(1)
2.2 Switching Surge on Overhead Lines
142(23)
2.2.1 Basic Mechanism of A Switching Surge
142(1)
2.2.2 Basic Parameters Influencing Switching Surges
143(1)
2.2.2.1 Source Circuit
143(3)
2.2.2.2 Switch
146(1)
2.2.2.3 Transformer
147(1)
2.2.2.4 Transmission Line
147(1)
2.2.3 Switching Surges in Practice
147(1)
2.2.3.1 Classification of Switching Surges
147(1)
2.2.3.2 Basic Characteristics of a Closing Surge: Field Test Results
148(5)
2.2.3.3 Closing Surge on a Single Phase Line
153(1)
2.2.3.4 Closing Surges on a Multiphase Line
154(4)
2.2.3.5 Effect of Various Parameters on a Closing Surge
158(7)
2.3 Fault Surge
165(11)
2.3.1 Fault Initiation Surge
165(2)
2.3.2 Characteristic of a Fault Initiation Surge
167(1)
2.3.2.1 Effect of Line Transposition
167(1)
2.3.2.2 Overvoltage Distribution
168(2)
2.3.3 Fault-Clearing Surge
170(6)
2.4 Lightning Surge
176(18)
2.4.1 Mechanism of Lightning Surge Generation
176(2)
2.4.2 Modeling of Circuit Elements
178(1)
2.4.2.1 Lightning Current
178(1)
2.4.2.2 Tower and Gantry
179(3)
2.4.2.3 Tower Footing Impedance
182(1)
2.4.2.4 Arc Horn
182(2)
2.4.2.5 Transmission Line
184(1)
2.4.2.6 Substation
184(1)
2.4.3 Simulation Result of A Lightning Surge
184(1)
2.4.3.1 Model Circuit
184(2)
2.4.3.2 Lightning Surge Overvoltage
186(1)
2.4.3.3 Effect of Various Parameters
187(7)
2.5 Theoretical Analysis of Transients: Hand Calculations
194(20)
2.5.1 Switching Surge on an Overhead Line
195(1)
2.5.1.1 Traveling Wave Theory
195(6)
2.5.1.2 Lumped Parameter Equivalent with Laplace Transform
201(4)
2.5.2 Fault Surge
205(2)
2.5.3 Lightning Surge
207(1)
2.5.3.1 Tower-Top Voltage
207(1)
2.5.3.2 Two-Phase Model
208(1)
2.5.3.3 No BFO
209(1)
2.5.3.4 Case of a BFO
210(1)
2.5.3.5 Consideration of Substation
211(3)
2.6 Frequency-Domain (FD) Method of Transient Simulations
214(21)
2.6.1 Introduction
214(1)
2.6.2 Numerical Fourier/Laplace Transform
214(1)
2.6.2.1 Finite Fourier Transform
214(2)
2.6.2.2 Shift of Integral Path: Laplace Transform
216(1)
2.6.2.3 Numerical Laplace Transform: Discrete Laplace Transform
217(1)
2.6.2.4 Odd-Number Sampling: Accuracy Improvement
217(3)
2.6.2.5 Application of Fast Fourier Transform FFT: Fast Laplace Transform (FLT)
220(6)
2.6.3 Transient Simulation
226(1)
2.6.3.1 Definition of Variables
227(1)
2.6.3.2 Subroutine to Prepare F(ω)
228(1)
2.6.3.3 Subroutine FLT
229(1)
2.6.4 Remarks of the FD Method
229(1)
Appendix 2A
229(4)
References
233(2)
3 Transients on Cable Systems
235(56)
3.1 Introduction
235(1)
3.2 Impedance and Admittance of Cable Systems
236(22)
3.2.1 Single-Phase Cable
236(1)
3.2.1.1 Cable Structure
236(1)
3.2.1.2 Impedance and Admittance
236(1)
3.2.2 Sheath Bonding
237(3)
3.2.3 Homogeneous Model of a Cross-Bonded Cable
240(1)
3.2.3.1 Homogeneous Impedance and Admittance
240(5)
3.2.3.2 Reduction of the Sheath
245(3)
3.2.4 Theoretical Formula of Sequence Currents
248(1)
3.2.4.1 Cross-Bonded Cable
248(5)
3.2.4.2 Solidly Bonded Cable
253(5)
3.3 Wave Propagation and Overvoltages
258(16)
3.3.1 Single-Phase Cable
258(1)
3.3.1.1 Propagation Constant
258(2)
3.3.1.2 Example of Transient Analysis
260(2)
3.3.2 Wave Propagation Characteristics
262(1)
3.3.2.1 Impedance: R, L
262(3)
3.3.2.2 Capacitance: C
265(1)
3.3.2.3 Transformation Matrix
266(1)
3.3.2.4 Attenuation Constant and Propagation Velocity
266(1)
3.3.3 Transient Voltage
266(5)
3.3.4 Limitations of the Sheath Voltage
271(2)
3.3.5 Installation of SVLs
273(1)
3.4 Studies on Recent and Planned EHV AC Cable Projects
274(4)
3.4.1 Recent Cable Projects
274(4)
3.4.2 Planned Cable Projects
278(1)
3.5 Cable System Design and Equipment Selection
278(8)
3.5.1 Study Flow
278(2)
3.5.2 Zero-Missing Phenomenon
280(2)
3.5.2.1 Sequential Switching
282(2)
3.5.3 Leading Current Interruption
284(2)
3.5.4 Cable Discharge
286(1)
3.6 EMTP Simulation Test Cases
286(5)
Problem 1
286(1)
Problem 2
287(1)
References
288(3)
4 Transient and Dynamic Characteristics of New Energy Systems
291(54)
4.1 Wind Farm
291(14)
4.1.1 Model Circuit of a Wind Farm
291(3)
4.1.2 Steady-State Analysis
294(1)
4.1.2.1 Cable Model
294(4)
4.1.2.2 Charging Current
298(3)
4.1.2.3 Load-Flow Calculation
301(2)
4.1.3 Transient Calculation
303(2)
4.2 Power-Electronics Simulation Using the EMTP
305(26)
4.2.1 Simple Switching Circuit
306(1)
4.2.2 Switching Transistor Model
307(1)
4.2.2.1 Simple Switch Model
307(5)
4.2.2.2 Switch with Delay Model
312(3)
4.2.3 Metal Oxide Semiconductor Field-Effect Transistor
315(1)
4.2.3.1 Simple Model
315(1)
4.2.3.2 Modified Switching Device Model
316(5)
4.2.3.3 Simulation Circuit and Results
321(8)
4.2.4 Thermal Calculation
329(2)
4.3 Voltage-Regulation Equipment Using Battery in a DC Railway System
331(12)
4.3.1 Introduction
331(2)
4.3.2 Feeding Circuit
333(3)
4.3.3 Measured and Calculated Results
336(1)
4.3.3.1 Measured Results
336(1)
4.3.3.2 Calculated Results of the Conventional System
336(4)
4.3.3.3 Calculated Results with Power Compensator
340(3)
4.4 Concluding Remarks
343(2)
References
344(1)
5 Numerical Electromagnetic Analysis Methods and Their Application in Transient Analyses
345(46)
5.1 Fundamentals
345(16)
5.1.1 Maxwell's Equations
345(1)
5.1.2 Finite-Difference Time-Domain Method
346(8)
5.1.3 Method of Moments
354(7)
5.2 Applications
361(30)
5.2.1 Grounding Electrodes
361(6)
5.2.2 Transmission Towers
367(4)
5.2.3 Distribution Lines: Lightning-Induced Surges
371(3)
5.2.4 Transmission Lines: Propagation of Lightning Surges in the Presence of Corona
374(6)
5.2.5 Power Cables: Propagation of Power Line Communication Signals
380(4)
5.2.6 Air-Insulated Substations
384(2)
5.2.7 Wind-Turbine Generator Towers
386(2)
References
388(3)
6 Electromagnetic Disturbances in Power Systems and Customer Homes
391(76)
6.1 Introduction
391(1)
6.2 Disturbances in Power Stations and Substations
392(18)
6.2.1 Statistical Data of Disturbances
392(1)
6.2.1.1 Overall Data
392(1)
6.2.1.2 Disturbed Equipment
393(2)
6.2.1.3 Incoming Surge Routes
395(1)
6.2.2 Characteristics of Disturbances
395(1)
6.2.2.1 Characteristics of LS Disturbances
395(1)
6.2.2.2 Characteristics of SS Disturbances
395(5)
6.2.2.3 SSs in DC Circuits
400(1)
6.2.3 Influence, Countermeasures, and Costs of Disturbances
401(1)
6.2.3.1 Influence of Disturbances on Power System Operation
401(2)
6.2.3.2 Conducted Countermeasures
403(1)
6.2.3.3 Cost of Countermeasures
403(1)
6.2.4 Case Studies
404(1)
6.2.4.1 Case No. 1
405(3)
6.2.4.2 Case No. 2
408(1)
6.2.4.3 Case No. 3
409(1)
6.2.5 Concluding Remarks
410(1)
6.3 Disturbances in Customers' Home Appliances
410(24)
6.3.1 Statistical Data of Disturbances
410(2)
6.3.2 Breakdown Voltage of Home Appliances
412(1)
6.3.2.1 Testing Voltage
412(1)
6.3.2.2 Breakdown Test
413(1)
6.3.3 Surge Voltages and Currents to Customers Due to Nearby Lightning
413(1)
6.3.3.1 Introduction
413(1)
6.3.3.2 Model Circuits for Experiments and EMTP Simulations
414(7)
6.3.3.3 Experimental and Simulation Results
421(5)
6.3.3.4 Concluding Remarks
426(1)
6.3.4 LS Incoming from a Communication Line
426(1)
6.3.4.1 Introduction
426(1)
6.3.4.2 Protective Device
426(3)
6.3.4.3 Lightning Surges
429(4)
6.3.4.4 Concluding Remarks
433(1)
6.4 Analytical Method of Solving Induced Voltages and Currents
434(33)
6.4.1 Introduction
434(2)
6.4.2 F-Parameter Formulation for Induced Voltages and Currents
436(1)
6.4.2.1 Formulation of F-Parameter
436(1)
6.4.2.2 Approximation of F-Parameters
437(1)
6.4.2.3 Cascaded Connection of Pipelines
437(1)
6.4.3 Application Examples
438(1)
6.4.3.1 Single Section Terminated by R1 and R2
438(5)
6.4.3.2 Two-Cascaded Sections of a Pipeline (Problem 6.1)
443(6)
6.4.3.3 Three-Cascaded Sections of a Pipeline (Problem 6.1)
449(1)
6.4.4 Comparison with a Field Test Result
450(1)
6.4.4.1 Comparison with EMTP Simulations
450(1)
6.4.4.2 Field Test Results
450(6)
6.4.5 Concluding Remarks
456(1)
Solution to Problem 6.1
456(1)
Appendix 6A
457(6)
References
463(4)
7 Grounding
467(82)
7.1 Introduction
467(1)
7.2 Grounding Methods
468(6)
7.2.1 Gas Pipeline
468(2)
7.2.2 Transmission Towers and GWs
470(1)
7.2.3 Underground Cable
471(1)
7.2.4 Buildings
472(1)
7.2.5 Distribution Lines and Customer's House
472(2)
7.3 Modeling for Steady-State and Transient Analysis
474(4)
7.3.1 Analytical/Theoretical Model
474(1)
7.3.1.1 Steady-State
474(2)
7.3.2 Modeling for EMTP Simulation
476(1)
7.3.3 Numerical Electromagnetic Analysis
477(1)
7.4 Measurement of Transient Responses on Various Grounding Electrodes
478(71)
7.4.1 Transient Response Measurements on Multiple Vertical Electrodes and FDTD Simulations
480(1)
7.4.1.1 Experimental Conditions
480(1)
7.4.1.2 Measuring Instruments
481(1)
7.4.1.3 Measured Results
482(1)
7.4.1.4 Experiments and FDTD Simulations
483(2)
7.4.1.5 A Study of Mutual Coupling by FDTD Simulations
485(7)
7.4.2 Theoretical Analysis of Transient Response
492(1)
7.4.2.1 Analytical Formula of Electrode Voltage
492(2)
7.4.2.2 Transient Voltage Waveform
494(2)
7.4.2.3 Analytical Investigation
496(2)
7.4.2.4 Circuit Parameters
498(2)
7.4.2.5 Wave Propagation Characteristic
500(2)
7.4.2.6 Concluding Remarks
502(1)
7.4.3 Investigation of Various Measured Results
502(1)
7.4.3.1 Test Circuit
502(1)
7.4.3.2 Measured Results
503(3)
7.4.3.3 Discussion
506(4)
7.4.3.4 Effect of Lead Wire
510(1)
7.4.4 Reduction of Grounding Impedance: Effect of Electrode Shape
511(1)
7.4.4.1 Introduction
511(1)
7.4.4.2 Field Measurements
512(4)
7.4.4.3 FDTD Simulation
516(10)
7.4.4.4 Summary
526(1)
7.4.5 Transient Induced Voltage to Control Cable from Grounding Mesh
527(1)
7.4.5.1 Introduction
527(1)
7.4.5.2 Model Circuit
528(2)
7.4.5.3 No Mutual Coupling (Case X0-Lj)
530(7)
7.4.5.4 With Mutual Coupling (Case X1-Lj)
537(4)
7.4.5.5 Conclusion
541(1)
Appendix 7A
542(3)
References
545(4)
8 Problems and Application Limits of Numerical Simulations
549(10)
8.1 Problems with Existing Impedance Formulas Used in Circuit Theory-Based Approaches
549(4)
8.1.1 Earth-Return Impedance
549(1)
8.1.1.1 Carson's Impedance
549(1)
8.1.1.2 Basic Assumptions of Impedance
550(1)
8.1.1.3 Nonparallel Conductors
550(1)
8.1.1.4 Stratified Earth
551(1)
8.1.1.5 Earth Resistivity and Permittivity
551(1)
8.1.2 Internal Impedance
551(1)
8.1.2.1 Schelkunoff's Impedance
551(1)
8.1.2.2 Arbitrary Cross-Section Conductor
551(1)
8.1.2.3 Semiconducting Layer of Cables
552(1)
8.1.2.4 Proximity Effect
552(1)
8.1.3 Earth-Return Admittance
552(1)
8.2 Existing Problems in Circuit Theory-Based Numerical Analysis
553(1)
8.2.1 Reliability of a Simulation Tool
553(1)
8.2.2 Assumptions and Limits of a Simulation Tool
553(1)
8.2.3 Input Data
554(1)
8.3 NEA for Power System Transients
554(5)
References
555(4)
Index 559
Akihiro Ametani earned his PhD from the University of Manchester (UMIST), Manchester, UK in 1973. He was with the UMIST from 1971 to 1974 and with Bonneville Power Administration for summers from 1976 to 1981. He developed the EMTP (Electro-Magnetic Transients Program). Since 1985, he has been a professor at Doshisha University, Kyoto, Japan. In 1988, he was a visiting professor at the Catholic University of Leuven, Belgium. From April 1996 to March 1998, he was the director of the Science and Engineering Institute, Doshisha University, and dean of the Library and Computer/ Information Center from April 1998 to March 2001. He was chairperson of the Doshisha Council until March 2014. Since April 2014, Dr. Ametani has been an Emeritus Professor at Doshisha University, and he is also an invited professor at École Polytechnique Montreal, Montreal, Canada. He is an IEEE Life Fellow and CIGRE distinguished member.

Naoto Nagaoka earned BS, MS, and PhD degrees from Doshisha University, Kyoto, Japan, in 1980, 1982, and 1993, respectively. In 1985, he joined Doshisha University, where he has been a professor since 1999. From April 2008 to March 2010, he was dean of the Student Admission Center, Doshisha University. From April 2010 to March 2012, he was director of the Liaison Office and the Center of Intellectual Properties, Doshisha University. Dr. Nagaoka is a member of the Institution of Engineering and Technology and the Institute of Electrical Engineers of Japan.

Yoshihiro Baba earned his PhD from the University of Tokyo, Tokyo, Japan, in 1999. Since 2012, he has been a professor at Doshisha University, Kyoto, Japan. He received the Technical Achievement Award from the IEEE EMC (Electromagnetic Compatibility) Society in 2014. He was the chairperson of Technical Program Committee of the 2015 Asia-Pacific International Conference on Lightning, Nagoya, Japan. He has been the convener of C4.37 Working Group of the International Council on Large Electric Systems since 2014. Dr. Baba has been an editor of the IEEE Transactions on Power Delivery since 2009, and an advisory editorial board member of the International Journal of Electrical Power and Energy Systems since 2016.

Teruo Ohno earned a BSc from the University of Tokyo, Tokyo in electrical engineering in 1996, an MSc from the Massachusetts Institute of Technology, Cambridge in electrical engineering in 2005, and a PhD from the Aalborg University, Aalborg, Denmark in energy technology in 2012. Since 1996, he has been with the Tokyo Electric Power Company, Inc., where he is currently involved in power system studies, in particular, on cable systems, generation interconnections, and protection relays. He was a secretary of Cigré WG C4.502, which focused on technical performance issues related to the application of long HVAC (high-voltage alternating current) cables. Dr. Ohno is a member of the IEEE (Institute of Electrical and Electronics Engineers) and the IEEJ (Institute of Electrical Engineers of Japan).

Koichi Yamabuki earned a PhD from Doshisha University, Kyoto, Japan, in 2000. Since 1999, he has been with National Institute of Technology, Wakayama College. He was a visiting researcher of the University of Bologna, Bologna, Italy from 2006 to 2007. His research area includes experimental and analytical investigation on surge phenomenon due to lightning strikes and grounding conditions on power and transportation facilities. Dr. Yamabuki is a committee member of IET (Innovation, Engineering, and Technology) Japan Network, a member of IEEE, and a member of IEEJ.