Atjaunināt sīkdatņu piekrišanu

E-grāmata: Power Vacuum Tubes Handbook

(Advanced Television Systems Committee, Morgan Hill, California, USA)
  • Formāts: 707 pages
  • Sērija : Electronics Handbook Series
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439850657
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 121,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 707 pages
  • Sērija : Electronics Handbook Series
  • Izdošanas datums: 19-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439850657
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material.

Translate Principles into Specific Applications

This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification, installation, and maintenance of high-power equipment utilizing vacuum tubes. It offers a comprehensive look at the important area of high-frequency/high-power applications of microwave power devices, making it possible for general principles to be translated into specific applications. Coverage includes power grid tubestriodes, tetrodes, and pentodesas well as microwave power tubes such as klystrons, traveling wave tubes, gyrotrons, and other high-frequency devices. These vacuum tubes are used in applications from radio broadcasting to television, radar, satellite communications, and more.

Explore a Wide Variety of Methods in Power Vacuum Tube Design

This third edition includes updates on vacuum tube technology, devices, applications, design methods, and modulation methods. It also expands its scope to cover properties of materials and RF system maintenance and troubleshooting. Explaining difficult concepts and processes clearly, this handbook guides readers in the design and selection of a power vacuum tube-based system.

Whats New in This Edition





Includes two new chapters on properties of materials and RF system maintenance and troubleshooting Contains updates and additions in most chapters Identifies key applications for commercial and scientific research Examines the frontiers of materials science directly impacting construction, reliability, and performance Reviews methods of power tube design for more efficient, longer-lasting tubes Features updated illustrations throughout to clarify and explain fundamental principles and implementation considerations

Recenzijas

"This handbook provides outstanding coverage of the present art in high-power vacuum-tube design and operation. After reading this book the reader will be intimately familiar with modern vacuum tubes. Engineers involved with the design, installation, specification, and maintenance of high-power vacuum tubes will find this handbook an invaluable resource in their work. There are certainly very few books on vacuum tubes, and this one provides a wealth of current information on all the common vacuum tubes in use today." John J. Shea, IEEE Electrical Insulation Magazine, May/June 2013, Vol. 29, No. 3

Praise for Previous Editions

"a valuable resource for practicing electrical engineers and others involved with vacuum tubes and related equipment." E.M. Aupperle, Choice, December 1999

Preface xxiii
Acknowledgment xxv
Author xxvii
1 Power Vacuum Tube Applications
1(18)
1.1 Introduction
1(1)
1.2 Vacuum Tube Development
1(11)
1.2.1 Pioneer Developers
2(2)
1.2.1.1 Radio Central
4(1)
1.2.1.2 WLW: The Nation's Station
4(1)
1.2.1.3 UHF: A New Technical Challenge
5(1)
1.2.1.4 Birth of the Klystron
6(2)
1.2.1.5 Nuclear Magnetic Resonance
8(1)
1.2.2 Transistor Is Born
8(1)
1.2.3 Satellite Technology
9(1)
1.2.4 Standardization
10(1)
1.2.5 Transmission Systems
11(1)
1.3 Vacuum Tube Applications
12(2)
1.3.1 Market Overview
13(1)
1.4 Electromagnetic Radiation Spectrum
14(5)
1.4.1 Low Frequency: 30-300 kHz
15(1)
1.4.2 Medium Frequency: 300 kHz-3 MHz
15(1)
1.4.3 High Frequency: 3-30 MHz
16(1)
1.4.4 Very High Frequency: 30-300 MHz
16(1)
1.4.5 Ultrahigh Frequency: 300 MHz-3 GHz
16(1)
1.4.6 Superhigh Frequency: 3-30 GHz
17(1)
References
17(1)
Bibliography
17(2)
2 Modulation Systems and Characteristics
19(50)
2.1 Introduction
19(1)
2.2 Modulation Systems
19(12)
2.2.1 Principles of Resonance
21(1)
2.2.1.1 Series Resonant Circuits
21(1)
2.2.1.2 Parallel Resonant Circuits
22(1)
2.2.1.3 Cavity Resonators
23(2)
2.2.2 Frequency Sources
25(2)
2.2.2.1 Frequency Stabilization
27(1)
2.2.2.2 Equivalent Circuit of a Quartz Resonator
27(2)
2.2.2.3 Temperature Compensation
29(1)
2.2.2.4 Stress Compensation
30(1)
2.2.2.5 Aging Effects
30(1)
2.3 Operating Class
31(4)
2.3.1 Operating Efficiency
33(1)
2.3.2 Broadband Amplifier Design
33(1)
2.3.2.1 Stagger Tuning
33(1)
2.3.2.2 Matching Circuits
34(1)
2.3.2.3 Power Combining
34(1)
2.4 Thermal and Circuit Noise
35(2)
2.4.1 Thermal Noise
37(1)
2.4.2 Noise in Systems of Cascaded Stages
37(1)
2.5 Amplitude Modulation
37(9)
2.5.1 High-Level AM Modulation
41(1)
2.5.2 Vestigial-Sideband Amplitude Modulation
42(1)
2.5.3 Single-Sideband Amplitude Modulation
42(3)
2.5.4 Quadrature Amplitude Modulation
45(1)
2.6 Frequency Modulation
46(10)
2.6.1 Modulation Index
47(3)
2.6.2 Phase Modulation
50(1)
2.6.3 Modifying FM Waves
51(1)
2.6.4 Preemphasis and De-Emphasis
51(1)
2.6.5 Modulation Circuits
51(1)
2.6.5.1 Direct-FM Modulator
52(2)
2.6.5.2 VCO Direct-FM Modulator
54(1)
2.6.6 FM Power Amplifiers
54(2)
2.7 Pulse Modulation
56(10)
2.7.1 Digital Modulation Systems
57(1)
2.7.2 Pulse Amplitude Modulation
57(2)
2.7.3 Pulse Time Modulation
59(2)
2.7.4 Pulse Code Modulation
61(1)
2.7.5 Delta Modulation
62(1)
2.7.6 Digital Coding Systems
62(2)
2.7.7 Baseband Digital Pulse Modulation
64(2)
2.8 Spread Spectrum Systems
66(3)
References
67(1)
Bibliography
68(1)
3 Vacuum Tube Principles
69(70)
3.1 Introduction
69(1)
3.2 Characteristics of Electrons
69(6)
3.2.1 Electron Optics
70(1)
3.2.2 Magnetic Field Effects
71(1)
3.2.3 Thermal Emission from Metals
72(1)
3.2.4 Secondary Emission
73(2)
3.3 Types of Vacuum Tubes
75(16)
3.3.1 Diode
75(1)
3.3.1.1 Applications
76(1)
3.3.2 Triode
77(5)
3.3.3 Tetrode
82(1)
3.3.3.1 Application Example
83(4)
3.3.4 Pentode
87(1)
3.3.4.1 Application Example
88(3)
3.4 High-Frequency Operating Limits
91(4)
3.4.1 Transit-Time Effects
93(2)
3.5 Vacuum Tube Design
95(20)
3.5.1 Device Cooling
95(1)
3.5.1.1 Air Cooling
96(1)
3.5.1.2 Water Cooling
96(2)
3.5.1.3 Vapor-Phase Cooling
98(1)
3.5.1.4 Special Applications
99(1)
3.5.2 Cathode Assembly
99(1)
3.5.2.1 Oxide Cathode
100(1)
3.5.2.2 Thoriated-Tungsten Cathode
101(1)
3.5.2.3 Tungsten-Impregnated Cathode
102(1)
3.5.2.4 Cathode Construction
102(2)
3.5.2.5 Velocity of Emission
104(1)
3.5.3 Grid Structures
104(1)
3.5.3.1 Wire Grids
104(2)
3.5.3.2 K-Grid
106(1)
3.5.3.3 Pyrolytic Grid
106(1)
3.5.3.4 Grid Physical Structure
107(1)
3.5.3.5 Secondary Emission Considerations
108(3)
3.5.4 Plate Assembly
111(1)
3.5.4.1 Ceramic Elements
112(1)
3.5.4.2 Aluminum Oxide Ceramics
113(1)
3.5.4.3 Beryllium Oxide Ceramics
114(1)
3.5.4.4 Other Ceramics
114(1)
3.6 Tube Construction
115(2)
3.6.1 Connection Points
116(1)
3.6.2 Tube Sockets
116(1)
3.7 Neutralization
117(14)
3.7.1 Circuit Analysis
118(1)
3.7.2 Circuit Design
119(1)
3.7.2.1 Below VHF
120(4)
3.7.2.2 VHF and Above
124(1)
3.7.3 Grounded-Grid Amplifier Neutralization
124(2)
3.7.4 Grid impedance
126(1)
3.7.4.1 Application Example
126(1)
3.7.5 Self-Neutralizing Frequency
127(3)
3.7.6 Neutralization Adjustment
130(1)
3.8 Electron Tube Characteristics
131(8)
3.8.1 Interpretation of Tube Data
134(2)
References
136(1)
Bibliography
136(3)
4 Designing Vacuum Tube Systems
139(70)
4.1 Introduction
139(3)
4.1.1 Class A Amplifier
140(1)
4.1.2 Class B and AB Amplifiers
140(1)
4.1.3 Class C Amplifier
140(2)
4.2 Principles of RF Power Amplification
142(42)
4.2.1 Drive Power Requirements
144(1)
4.2.1.1 Operational Considerations for VHF and UHF
145(1)
4.2.2 Mechanical and Electrical Considerations
146(1)
4.2.2.1 Lead Lengths
147(1)
4.2.2.2 Power Supply Considerations
147(1)
4.2.3 Bypassing Tube Elements
148(1)
4.2.3.1 Filament Bypassing
148(1)
4.2.3.2 Screen and Suppressor Grid Bypassing
149(1)
4.2.3.3 Application Examples
149(1)
4.2.4 Parasitic Oscillations
150(4)
4.2.4.1 Dynatron Oscillation
154(1)
4.2.4.2 Harmonic Energy
154(1)
4.2.5 Shielding
155(1)
4.2.5.1 Pierced Shields
155(1)
4.2.5.2 Metal Base Shells and Submounted Sockets
156(1)
4.2.5.3 Compartments
156(1)
4.2.6 Protection Measures
157(1)
4.2.7 Cavity Amplifier Systems
158(2)
4.2.8 Bandwidth and Efficiency
160(1)
4.2.9 Current Paths
161(1)
4.2.9.1 Input Circuit
161(2)
4.2.9.2 Output Circuit
163(1)
4.2.10 1/4-Wavelength Cavity
164(3)
4.2.10.1 Tuning the Cavity
167(1)
4.2.11 1/2-Wavelength Cavity
168(3)
4.2.11.1 Lengthening the Plate Line
171(2)
4.2.12 Folded 1/2-Wavelength Cavity
173(1)
4.2.13 Wideband Cavity
174(1)
4.2.14 Output Coupling
175(1)
4.2.14.1 Inductive Coupling
175(2)
4.2.14.2 Capacitive Coupling
177(2)
4.2.14.3 PA Loading
179(2)
4.2.15 Mechanical Design
181(3)
4.3 High-Voltage Power Supplies
184(25)
4.3.1 Silicon Rectifiers
184(1)
4.3.1.1 Operating Rectifiers in Series
185(1)
4.3.1.2 Operating Rectifiers in Parallel
186(1)
4.3.1.3 Silicon Avalanche Rectifiers
187(1)
4.3.2 Thyristor Servo Systems
188(1)
4.3.2.1 Inductive Loads
189(2)
4.3.2.2 Applications
191(2)
4.3.2.3 Triggering Circuits
193(3)
4.3.2.4 Fusing
196(1)
4.3.2.5 Control Flexibility
196(1)
4.3.3 Polyphase Rectifier Circuits
196(1)
4.3.4 Power Supply Filter Circuits
197(3)
4.3.4.1 Inductive Input Filter
200(2)
4.3.4.2 Capacitive Input Filter
202(2)
4.3.5 Parameter Sampling Circuits
204(3)
4.3.6 Protection Systems
207(1)
References
208(1)
Bibliography
208(1)
5 Applying Vacuum Tube Devices
209(42)
5.1 Introduction
209(1)
5.2 AM Power Amplification Systems
209(10)
5.2.1 Control Grid Modulation
210(2)
5.2.2 Suppressor Grid Modulation
212(1)
5.2.3 Cathode Modulation
212(1)
5.2.4 High-Level AM Amplification
213(2)
5.2.4.1 Class B Modulator
215(1)
5.2.5 Pulse Width Modulation
216(3)
5.3 Linear Amplification
219(4)
5.3.1 Device Selection
219(1)
5.3.2 Grid-Driven Linear Amplifier
220(1)
5.3.3 Cathode-Driven Linear Amplifier
220(1)
5.3.4 Intermodulation Distortion
221(2)
5.4 High-Efficiency Linear Amplification
223(8)
5.4.1 Chireix Outphasing Modulated Amplifier
223(2)
5.4.2 Doherty Amplifier
225(2)
5.4.3 Screen-Modulated Doherty-Type Amplifier
227(1)
5.4.4 Terman-Woodyard Modulated Amplifier
228(1)
5.4.5 Dome Modulated Amplifier
229(2)
5.5 Television Power Amplifier Systems
231(5)
5.5.1 System Considerations
231(2)
5.5.2 Power Amplifier
233(2)
5.5.2.1 Application Example
235(1)
5.6 FM Power Amplifier Systems
236(8)
5.6.1 Cathode-Driven Triode Amplifier
237(1)
5.6.2 Grounded-Grid vs. Grid-Driven Tetrode
238(1)
5.6.3 Grid-Driven Tetrode/Pentode Amplifiers
239(2)
5.6.4 Impedance Matching into the Grid
241(1)
5.6.4.1 Interstage Coupling
242(1)
5.6.5 Neutralization
243(1)
5.7 Special-Application Amplifiers
244(7)
5.7.1 Distributed Amplification
244(1)
5.7.2 Radar
245(1)
5.7.2.1 Modulator
246(3)
References
249(1)
Bibliography
249(2)
6 Microwave Power Tubes
251(88)
6.1 Introduction
251(4)
6.1.1 Linear-Beam Tubes
252(1)
6.1.2 Crossed-Field Tubes
253(1)
6.1.2.1 Crossed-Field Amplifier
254(1)
6.2 Grid Vacuum Tubes
255(6)
6.2.1 Planar Triode
256(2)
6.2.2 High-Power UHF Tetrode
258(1)
6.2.3 Diacrode
259(2)
6.3 Klystron
261(35)
6.3.1 Reflex Klystron
261(3)
6.3.2 Two-Cavity Klystron
264(2)
6.3.2.1 Two-Cavity Klystron Oscillator
266(1)
6.3.2.2 Two-Cavity Klystron Amplifier
266(1)
6.3.3 Multicavity Klystron
266(1)
6.3.3.1 Operating Principles
267(3)
6.3.3.2 Emission
270(2)
6.3.3.3 Modulating Anode
272(1)
6.3.3.4 Magnetic Field
272(3)
6.3.3.5 RF Structure
275(2)
6.3.3.6 Phased Electron Operation
277(2)
6.3.3.7 Types of Devices
279(1)
6.3.4 Beam Pulsing
280(2)
6.3.5 Integral vs. External Cavity
282(1)
6.3.5.1 Number of Cavities
283(1)
6.3.5.2 Efficiency
284(1)
6.3.5.3 Performance Trade-Offs
284(1)
6.3.6 MSDC Klystron
285(1)
6.3.6.1 Theory of Operation
285(1)
6.3.6.2 Electron Trajectories
286(3)
6.3.6.3 Mechanical Construction
289(2)
6.3.6.4 MSDC Power Supply
291(1)
6.3.6.5 Device Performance
291(3)
6.3.6.6 Applying the MSDC Klystron
294(2)
6.4 Klystrode/Inductive Output Tube
296(8)
6.4.1 Theory of Operation
296(1)
6.4.2 Electron Gun
297(2)
6.4.3 Grid Structure
299(1)
6.4.4 Input Cavity
300(1)
6.4.5 Output Cavity
301(1)
6.4.6 Application Considerations
302(2)
6.4.7 Continuing Research Efforts
304(1)
6.5 Constant Efficiency Amplifier
304(2)
6.5.1 Theory of Operation
304(2)
6.6 Traveling Wave Tube
306(10)
6.6.1 Theory of Operation
308(1)
6.6.1.1 Interaction Circuit
308(2)
6.6.1.2 Pulse Modulation
310(1)
6.6.1.3 Electron Gun
310(1)
6.6.1.4 Beam Focusing
311(2)
6.6.1.5 Collector Assembly
313(1)
6.6.2 Operating Efficiency
314(1)
6.6.3 Operational Considerations
314(1)
6.6.3.1 Intermodulation Distortion
315(1)
6.6.3.2 Second-Harmonic Content
315(1)
6.6.3.3 AM/PM Conversion
315(1)
6.6.3.4 Phase Variation
315(1)
6.7 Crossed-Field Tubes
316(12)
6.7.1 Magnetron
316(1)
6.7.1.1 Operating Principles
317(2)
6.7.1.2 Coaxial Magnetron
319(1)
6.7.1.3 Frequency-Agile Magnetron
319(1)
6.7.1.4 Linear Magnetron
320(1)
6.7.2 Backward Wave Oscillator
321(1)
6.7.3 Strap-Fed Devices
322(1)
6.7.4 Gyrotron
323(1)
6.7.4.1 Theory of Operation
324(2)
6.7.4.2 Gyrotron Design Variations
326(2)
6.8 Other Microwave Devices
328(3)
6.8.1 Quasiquantum Devices
329(1)
6.8.2 Variations on the Klystron
330(1)
6.9 Microwave Tube Life
331(8)
6.9.1 Life-Support System
331(1)
6.9.2 Protection Measures
332(1)
6.9.2.1 Heater Supply
333(1)
6.9.2.2 Beam Supply
333(1)
6.9.2.3 Magnet Supply
333(1)
6.9.2.4 RF Circuits
334(1)
6.9.3 Filament Voltage Control
334(1)
6.9.4 Cooling System
335(1)
6.9.5 Reliability Statistics
335(1)
6.9.5.1 MTTR
335(1)
References
336(1)
Bibliography
337(2)
7 RF Interconnection and Switching
339(64)
7.1 Introduction
339(2)
7.1.1 Skin Effect
339(2)
7.2 Coaxial Transmission Line
341(14)
7.2.1 Electrical Parameters
342(1)
7.2.1.1 Transverse Electromagnetic Mode
342(1)
7.2.1.2 Dielectric
343(1)
7.2.1.3 Impedance
343(2)
7.2.1.4 Resonant Characteristics
345(1)
7.2.2 Electrical Considerations
345(2)
7.2.3 Coaxial Cable Ratings
347(1)
7.2.3.1 Power Rating
347(3)
7.2.3.2 Connector Effects
350(1)
7.2.3.3 Attenuation
350(4)
7.2.3.4 Phase Stability
354(1)
7.2.4 Mechanical Parameters
354(1)
7.3 Waveguide
355(12)
7.3.1 Propagation Modes
356(2)
7.3.1.1 Dual-Polarity Waveguide
358(1)
7.3.1.2 Efficiency
359(1)
7.3.2 Ridged Waveguide
359(1)
7.3.3 Circular Waveguide
359(1)
7.3.3.1 Parasitic Energy
360(1)
7.3.4 Doubly Truncated Waveguide
361(1)
7.3.5 Impedance Matching
362(1)
7.3.5.1 Waveguide Filters
363(1)
7.3.6 Installation Considerations
364(1)
7.3.6.1 Tuning
364(1)
7.3.6.2 Waveguide Hardware
365(1)
7.3.7 Cavity Resonators
365(2)
7.4 RF Combiner and Diplexer Systems
367(29)
7.4.1 Passive Filters
367(1)
7.4.1.1 Filter Type
368(1)
7.4.1.2 Filter Alignment
368(3)
7.4.1.3 Filter Order
371(1)
7.4.2 Four-Port Hybrid Combiner
372(2)
7.4.3 Nonconstant-Impedance Diplexer
374(2)
7.4.4 Constant-Impedance Diplexer
376(1)
7.4.4.1 Band-Stop Diplexer
377(1)
7.4.4.2 Bandpass Constant-Impedance Diplexer
378(2)
7.4.4.3 Isolation of f1 to f2
380(1)
7.4.4.4 Intermodulation Products
380(2)
7.4.4.5 Group Delay
382(1)
7.4.5 Microwave Combiners
383(1)
7.4.6 Hot-Switching Combiners
383(3)
7.4.6.1 Phase Relationships
386(2)
7.4.6.2 Variable-Dielectric Vane
388(1)
7.4.6.3 Dielectric Posts
388(1)
7.4.6.4 Variable-Phase Hybrid
389(1)
7.4.7 Phased-Array Antenna Systems
390(3)
7.4.7.1 Phase-Shift Devices
393(1)
7.4.7.2 Radar System Duplexer
394(2)
7.5 High-Power Isolators
396(7)
7.5.1 Theory of Operation
397(1)
7.5.2 Applications
398(2)
7.5.2.1 Hot Switch
400(1)
7.5.2.2 Diplexer
400(1)
7.5.2.3 Multiplexer
400(1)
References
401(1)
Bibliography
401(2)
8 Properties of Materials
403(32)
8.1 Metals
403(6)
8.1.1 Skin Depth
406(1)
8.1.2 Heat Conduction
407(1)
8.1.3 Thermal Expansion
407(2)
8.2 Dielectrics
409(4)
8.2.1 Frequency Dependence of the Properties
412(1)
8.3 Tabular Data
413(22)
8.3.1 Electrical Resistivity of Pure Metals
413(1)
8.3.2 Electrical Resistivity of Selected Alloys
413(1)
8.3.3 Resistance of Wires
413(1)
8.3.4 Dielectric Constants of Common Materials
413(19)
References
432(1)
Bibliography
432(3)
9 Cooling Considerations
435(52)
9.1 Introduction
435(6)
9.1.1 Thermal Properties
435(1)
9.1.2 Heat Transfer Mechanisms
436(1)
9.1.2.1 Conduction
436(2)
9.1.2.2 Convection
438(1)
9.1.2.3 Radiation
438(1)
9.1.3 Physics of Boiling Water
439(2)
9.2 Application of Cooling Principles
441(30)
9.2.1 Forced-Air Cooling Systems
442(1)
9.2.1.1 Cooling Airflow Data
443(5)
9.2.1.2 Blower Selection
448(1)
9.2.2 Water Cooling
448(1)
9.2.2.1 Cooling System Design
449(2)
9.2.2.2 Water Purity and Resistivity
451(2)
9.2.2.3 Condensation
453(1)
9.2.2.4 Preventive Maintenance
453(1)
9.2.3 Vapor-Phase Cooling
454(2)
9.2.3.1 Anode Design
456(1)
9.2.3.2 Boiler
457(2)
9.2.3.3 Insulating Tubing
459(1)
9.2.3.4 Control Box
459(2)
9.2.3.5 Equalizer Line
461(1)
9.2.3.6 Condenser
461(1)
9.2.3.7 Pressure Interlock
461(2)
9.2.3.8 Piping
463(1)
9.2.3.9 Automatic Refilling System
464(1)
9.2.3.10 Alternative Vapor Cooling Systems
465(1)
9.2.3.11 Maintenance
466(1)
9.2.4 Temperature Measurements
466(1)
9.2.4.1 "Crayon" Temperature Measurement
467(1)
9.2.4.2 Phase-Change Fluid
468(1)
9.2.4.3 Selection Process
469(1)
9.2.5 Air-Handling System
469(2)
9.3 Operating Environment
471(16)
9.3.1 Air-Handling System
471(1)
9.3.2 Air Cooling System Design
472(1)
9.3.2.1 Case 1
473(1)
9.3.2.2 Case 2
474(1)
9.3.2.3 Case 3
475(1)
9.3.3 Site Design Guidelines
475(2)
9.3.3.1 Closed Site Design
477(1)
9.3.3.2 Open Site Design
478(2)
9.3.3.3 Hybrid Design
480(1)
9.3.4 Water/Vapor Cooling System Maintenance
481(1)
9.3.4.1 Tests for Purity
482(1)
9.3.4.2 Foaming Test for Water Purity
483(1)
References
484(1)
Bibliography
485(2)
10 Reliability Considerations
487(52)
10.1 Introduction
487(2)
10.1.1 Terminology
487(2)
10.2 Quality Assurance
489(5)
10.2.1 Inspection Process
490(1)
10.2.2 Reliability Evaluation
490(1)
10.2.2.1 Parts-Count Method
491(1)
10.2.2.2 Stress-Analysis Method
491(1)
10.2.3 Failure Analysis
491(1)
10.2.4 Standardization
492(2)
10.3 Reliability Analysis
494(11)
10.3.1 Statistical Reliability
495(2)
10.3.1.1 Roller-Coaster Hazard Rate
497(1)
10.3.2 Environmental Stress Screening
498(3)
10.3.3 Latent Defects
501(2)
10.3.4 Operating Environment
503(1)
10.3.5 Failure Modes
503(1)
10.3.6 Maintenance Considerations
504(1)
10.3.6.1 Common-Mode Failure
504(1)
10.3.6.2 Spare Parts
505(1)
10.4 Vacuum Tube Reliability
505(20)
10.4.1 Thermal Cycling
506(1)
10.4.2 Tube-Changing Procedure
507(2)
10.4.3 Power Tube Conditioning
509(1)
10.4.3.1 Power Supply
510(1)
10.4.3.2 Conditioning Procedure
511(1)
10.4.3.3 Considerations for Very Large Tubes
511(1)
10.4.3.4 Safety
512(1)
10.4.4 Filament Voltage
512(1)
10.4.4.1 Black Heat
513(1)
10.4.5 Filament Voltage Management
514(1)
10.4.5.1 Klystron Devices
514(2)
10.4.6 PA Stage Tuning
516(1)
10.4.7 Fault Protection
517(2)
10.4.8 Vacuum Tube Life
519(1)
10.4.8.1 Catastrophic Failures
520(1)
10.4.9 Examining Tube Performance
521(3)
10.4.10 Shipping and Handling Vacuum Tubes
524(1)
10.5 Klystron Reliability
525(14)
10.5.1 Cleaning and Flushing the Cooling System
526(1)
10.5.1.1 Transmitter Flushing
526(1)
10.5.1.2 Flushing Klystron Water Lines
527(1)
10.5.1.3 Cleaning Klystron Water Lines
528(1)
10.5.1.4 Flushing and Cleaning Magnet Water Lines
529(1)
10.5.1.5 General Cleaning
529(1)
10.5.2 Cleaning Ceramic Elements
529(1)
10.5.3 Reconditioning Klystron Gun Elements
530(1)
10.5.4 Focusing Electromagnet Maintenance
531(1)
10.5.5 Power Control Considerations
532(1)
10.5.5.1 Primary Power Interruption
533(1)
References
534(1)
Bibliography
535(4)
11 Device Performance Criteria
539(52)
11.1 Introduction
539(1)
11.2 Measurement Parameters
540(24)
11.2.1 Power Measurements
540(1)
11.2.1.1 Root Mean Square
541(1)
11.2.1.2 Average-Response Measurement
542(1)
11.2.1.3 Peak-Response Measurement
543(3)
11.2.1.4 Measurement Bandwidth
546(1)
11.2.1.5 Meter Accuracy
546(1)
11.2.1.6 Radio Frequency Power Measurement
547(1)
11.2.2 Decibel Measurement
547(2)
11.2.3 Noise Measurement
549(1)
11.2.4 Phase Measurement
550(1)
11.2.4.1 Relation to Frequency
551(1)
11.2.5 Nonlinear Distortion
552(1)
11.2.5.1 Harmonic Distortion
552(5)
11.2.5.2 Intermodulation Distortion
557(1)
11.2.5.3 Measurement Techniques
558(1)
11.2.5.4 Addition and Cancellation of Distortion Components
559(2)
11.2.5.5 Intermodulation Precorrection Techniques
561(3)
11.3 Vacuum Tube Operating Parameters
564(12)
11.3.1 Stage Tuning
564(1)
11.3.1.1 Power Grid Tubes
564(1)
11.3.1.2 Screen Voltage
565(1)
11.3.1.3 Back-Heating by Electrons
566(2)
11.3.2 Amplifier Balance
568(1)
11.3.3 Parallel Tube Amplifiers
569(1)
11.3.4 Harmonic Energy
569(1)
11.3.4.1 Controlling Harmonics
570(1)
11.3.5 Klystron Tuning Considerations
570(3)
11.3.6 Intermodulation Distortion
573(1)
11.3.6.1 Generation of Radio Frequency Intermodulation Products
574(1)
11.3.6.2 Intermodulation as a Function of Turnaround Loss
574(2)
11.4 Voltage Standing Wave Ratio
576(3)
11.5 Radio Frequency System Performance
579(12)
11.5.1 Key System Measurements
580(1)
11.5.2 Synchronous AM in FM Systems
580(1)
11.5.2.1 Bandwidth Limiting
581(1)
11.5.2.2 Effects of Synchronous Amplitude Modulation
582(2)
11.5.3 Incidental Phase Modulation
584(1)
11.5.3.1 Bandwidth Considerations
584(1)
11.5.3.2 Corrective Procedures
584(2)
11.5.4 Carrier Amplitude Regulation
586(1)
11.5.5 Site-Related Intermodulation Products
587(1)
11.5.5.1 Receiver Intermod
588(1)
11.5.5.2 Hardware Intermod
588(1)
References
588(1)
Bibliography
589(2)
12 RF System Maintenance and Troubleshooting
591(36)
12.1 Introduction
591(1)
12.2 Routine Maintenance
591(11)
12.2.1 Maintenance Log
591(1)
12.2.1.1 Case Study #1
592(1)
12.2.1.2 Case Study #2
593(1)
12.2.2 Preventive Maintenance Routine
594(1)
12.2.2.1 Resistors and Capacitors
594(2)
12.2.2.2 Power Supply Components
596(1)
12.2.2.3 Coils and RF Transformers
596(2)
12.2.2.4 Relay Mechanisms
598(1)
12.2.2.5 Connection Points
599(1)
12.2.3 Cleaning the System
599(3)
12.3 Transmission Line and Antenna
602(3)
12.3.1 Effects of Modulation
603(1)
12.3.2 Maintenance Considerations
604(1)
12.4 High-Voltage Power Supply
605(5)
12.4.1 Power Supply Maintenance
605(2)
12.4.2 Power Supply Metering
607(1)
12.4.3 Overload Sensor
607(1)
12.4.4 Transient Disturbances
608(1)
12.4.5 Single Phasing
608(2)
12.5 Troubleshooting Procedure
610(17)
12.5.1 Factory Service Assistance
611(1)
12.5.2 Plate Overload Fault
612(1)
12.5.2.1 Troubleshooting Procedure
612(2)
12.5.2.2 Process of Elimination
614(2)
12.5.3 Radio Frequency System Faults
616(2)
12.5.3.1 Component Substitution
618(1)
12.5.3.2 VSWR Overload
619(1)
12.5.4 Power Control Faults
620(1)
12.5.4.1 Thyristor Control System
621(1)
12.5.4.2 Interlock Failures
621(2)
12.5.4.3 Step-Start Faults
623(1)
12.5.5 Protection Circuits
624(3)
13 Safe Handling of Vacuum Tube Devices
627(22)
13.1 Introduction
627(1)
13.2 Electric Shock
627(7)
13.2.1 Effects on the Human Body
628(2)
13.2.2 Circuit Protection Hardware
630(1)
13.2.3 Working with High Voltage
631(1)
13.2.3.1 Radio Frequency Considerations
632(1)
13.2.4 First Aid Procedures
632(2)
13.3 Operating Hazards
634(5)
13.3.1 OSHA Safety Considerations
634(2)
13.3.1.1 Protective Covers
636(1)
13.3.1.2 Identification and Marking
636(1)
13.3.1.3 Grounding
636(2)
13.3.2 Beryllium Oxide Ceramics
638(1)
13.3.3 Corrosive and Poisonous Compounds
638(1)
13.3.4 FC-75 Toxic Vapor
639(1)
13.4 Nonionizing Radiation
639(10)
13.4.1 NEPA Mandate
640(1)
13.4.2 Revised Guidelines
641(1)
13.4.3 Multiple-User Sites
642(2)
13.4.4 Operator Safety Considerations
644(1)
13.4.5 X-Ray Radiation Hazard
644(1)
13.4.6 Implosion Hazard
644(1)
13.4.7 Hot Coolant and Surfaces
644(1)
13.4.8 Polychlorinated Biphenyls
645(1)
13.4.8.1 Governmental Action
646(2)
References
648(1)
Bibliography
648(1)
Appendix: Mathematics, Symbols, and Physical Constants 649(14)
Index 663
Jerry C. Whitaker is the vice president of Standards Development at the Advanced Television Systems Committee (ATSC). He has been involved in various aspects of the electronics industry for more than 30 years, with specialization in communications. His CRC Press books include the following:













AC Power Systems Handbook, Third Edition (2006)





The Electronics Handbook, Second Edition (2005)





Microelectronics, Second Edition (2005)





The RF Transmission Systems Handbook (2002)





Electronic Systems Maintenance Handbook, Second Edition (2001)