Atjaunināt sīkdatņu piekrišanu

E-grāmata: Practical Design Calculations for Groundwater and Soil Remediation

(California State University, Fullerton, USA)
  • Formāts: 320 pages
  • Izdošanas datums: 02-Jun-2014
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466585249
  • Formāts - PDF+DRM
  • Cena: 162,80 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 320 pages
  • Izdošanas datums: 02-Jun-2014
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466585249

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Includes Illustrative Applications of Practical Design Calculations

Written in a straightforward style and user-friendly format, Practical Design Calculations for Groundwater and Soil Remediation, Second Edition highlights the essential concepts and important aspects of major design calculations used in soil and groundwater remediation. Drawing from the authors teaching and consulting experience, this text provides practical information that addresses the current needs of practicing engineers, scientists, and legal experts in the field.







Whats New in This Edition:

This latest edition covers important aspects of major design calculations as well as practical and relevant working information for groundwater and soil remediation. Realistic examples are used liberally to illustrate the applications of the design calculations. Many examples are designed to assist the readers in building the right concepts.

The text begins with an introductory chapter; it then illustrates the engineering calculations needed during site assessment and remedial investigation. It continues with a discussion on plume migration in soil and groundwater. It then covers the mass-balance concept, reaction kinetics, and types, configurations, and sizing of reactors. The author incorporates important design calculations for commonly used in situ and ex situ soil and groundwater remediation technologies, such as soil venting, air sparging, air stripping, bioremediation, and chemical oxidation, and off-gas treatment technologies. He also presents design calculations for capture zone and optimal well spacing.





Includes both SI and US customary units, as well as unit conversions Presents examples that directly follow the design equations Provides discussion that assists engineers in building proper concepts







Practical Design Calculations for Groundwater and Soil Remediation, Second Edition

also serves as a reference or textbook for students dedicated to the study of site remediation.

Recenzijas

"This latest edition of Kuos book covers important aspects of major design calculations as well as providing practical and relevant working information for groundwater and soil remediation. Realistic examples are used liberally to illustrate the applications of the design calculations a comprehensive methodological and practical manual, suitable for specialists trained in a variety of technical and educational backgrounds, for the solution of very complicated groundwater and soil remediation requiring a multidisciplinary approach. provides practical information that addresses the current needs of practising engineers, scientists and legal experts who are employed by industry, consulting companies, law firms and regulatory agencies in the field of soil and groundwater remediation." Quarterly Journal of Engineering Geology and Hydrogeology, 2015

Preface xiii
About the Author xv
1 Introduction 1(4)
1.1 Background and Objectives
1(1)
1.2 Organization of the Book
2(1)
1.3 How to Use This Book
3(2)
2 Site Assessment and Remedial Investigation 5(62)
2.1 Introduction
5(2)
2.2 Determination of Extent of Contamination
7(29)
2.2.1 Mass and Concentration Relationship
7(11)
2.2.2 Amount of Soil from Tank Removal or from Excavation of the Impacted Area
18(4)
2.2.3 Amount of Impacted Soil in the Vadose Zone
22(3)
2.2.4 Mass Fraction and Mole Fraction of Components in Gasoline
25(4)
2.2.5 Height of Capillary Fringe
29(2)
2.2.6 Estimating the Mass and Volume of the Free- Floating Product
31(3)
2.2.7 Determination of the Extent of Contamination: A Comprehensive Example
34(2)
2.3 Soil Borings and Groundwater Monitoring Wells
36(5)
2.3.1 Amount of Cuttings from Soil Boring
37(1)
2.3.2 Amount of Packing Material and/or Bentonite Seal
38(1)
2.3.3 Well Volume for Groundwater Sampling
39(2)
2.4 Mass of COCs Present in Different Phases
41(25)
2.4.1 Equilibrium between Free Product and Vapor
41(4)
2.4.2 Liquid-Vapor Equilibrium
45(5)
2.4.3 Solid-Liquid Equilibrium
50(4)
2.4.4 Solid-Liquid-Vapor Equilibrium
54(2)
2.4.5 Partition of COCs in Different Phases
56(10)
References
66(1)
3 Plume Migration in Aquifer and Soil 67(46)
3.1 Introduction
67(1)
3.2 Groundwater Movement
68(12)
3.2.1 Darcy's Law
68(2)
3.2.2 Darcy Velocity versus Seepage Velocity
70(2)
3.2.3 Intrinsic Permeability versus Hydraulic Conductivity
72(4)
3.2.4 Transmissivity, Specific Yield, and Storativity
76(2)
3.2.5 Determine Groundwater Flow Gradient and Flow Direction
78(2)
3.3 Groundwater Pumping
80(6)
3.3.1 Steady-State Flow in a Confined Aquifer
80(3)
3.3.2 Steady-State Flow in an Unconfined Aquifer
83(3)
3.4 Aquifer Tests
86(7)
3.4.1 Theis Method
87(2)
3.4.2 Cooper-Jacob's Straight-Line Method
89(2)
3.4.3 Distance-Drawdown Method
91(2)
3.5 Migration Velocity of the Dissolved Plume
93(13)
3.5.1 Advection-Dispersion Equation
94(1)
3.5.2 Diffusivity and Dispersion Coefficient
94(6)
3.5.3 Retardation Factor for Migration in Groundwater
100(2)
3.5.4 Migration of Dissolved Plume
102(4)
3.6 COC Transport in the Vadose Zone
106(6)
3.6.1 Liquid Movement in the Vadose Zone
106(1)
3.6.2 Gaseous Diffusion in the Vadose Zone
107(3)
3.6.3 Retardation Factor for COC Vapor Migration in the Vadose Zone
110(2)
References
112(1)
4 Mass-Balance Concept and Reactor Design 113(38)
4.1 Introduction
113(1)
4.2 Mass-Balance Concept
114(3)
4.3 Chemical Kinetics
117(6)
4.3.1 Rate Equations
117(4)
4.3.2 Half-Life
121(2)
4.4 Types of Reactors
123(10)
4.4.1 Batch Reactors
124(5)
4.4.2 CFSTRs
129(1)
4.4.3 PFRs
130(3)
4.5 Sizing the Reactors
133(3)
4.6 Reactor Configurations
136(15)
4.6.1 Reactors in Series
136(7)
4.6.2 Reactors in Parallel
143(8)
5 Vadose Zone Soil Remediation 151(66)
5.1 Introduction
151(1)
5.2 Soil Vapor Extraction
151(34)
5.2.1 Description of the Soil-Venting Process
151(1)
5.2.2 Expected Vapor Concentration
152(11)
5.2.3 Radius of Influence and Pressure Profile
163(4)
5.2.4 Vapor Flow Rates
167(5)
5.2.5 COC Removal Rate
172(3)
5.2.6 Cleanup Time
175(6)
5.2.7 Effect of Temperature on Soil Venting
181(1)
5.2.8 Number of Vapor Extraction Wells
182(1)
5.2.9 Sizing the Vacuum Pump (Blower)
183(2)
5.3 Soil Washing/Solvent Extraction/Soil Flushing
185(5)
5.3.1 Description of the Soil-Washing Process
185(1)
5.3.2 Design of a Soil-Washing System
186(4)
5.4 Soil Bioremediation
190(8)
5.4.1 Description of the Soil-Bioremediation Process
190(1)
5.4.2 Moisture Requirement
191(1)
5.4.3 Nutrient Requirements
192(3)
5.4.4 Oxygen Requirement
195(3)
5.5 Bioventing
198(3)
5.5.1 Description of the Bioventing Process
198(1)
5.5.2 Design of the Bioventing Process
198(3)
5.6 In Situ Chemical Oxidation
201(5)
5.6.1 Description of the In Situ Chemical Oxidation Process
201(1)
5.6.2 Commonly Used Oxidants
201(1)
5.6.3 Oxidant Demand
202(4)
5.7 Thermal Destruction
206(5)
5.7.1 Description of the Thermal Destruction Process
206(1)
5.7.2 Design of the Combustion Units
206(2)
5.7.3 Regulatory Requirements for Incineration of Hazardous Waste
208(3)
5.8 Low-Temperature Thermal Desorption
211(3)
5.8.1 Description of the Low-Temperature Thermal Desorption Process
211(1)
5.8.2 Design of the Low-Temperature Thermal Desorption Process
211(3)
References
214(3)
6 Groundwater Remediation 217(52)
6.1 Introduction
217(1)
6.2 Groundwater Extraction
218(15)
6.2.1 Cone of Depression
218(5)
6.2.1.1 Steady-State Flow in a Confined Aquifer
218(3)
6.2.1.2 Steady-State Flow in an Unconfined Aquifer
221(2)
6.2.2 Capture-Zone Analysis
223(10)
6.2.2.1 One Groundwater Extraction Well
224(4)
6.2.2.2 Multiple Wells
228(3)
6.2.2.3 Well Spacing and Number of Wells
231(2)
6.3 Activated-Carbon Adsorption
233(7)
6.3.1 Description of the Activated-Carbon Adsorption
233(1)
6.3.2 Adsorption Isotherm and Adsorption Capacity
233(3)
6.3.3 Design of an Activated-Carbon Adsorption System
236(4)
6.3.3.1 Empty-Bed Contact Time
236(1)
6.3.3.2 Cross-Sectional Area
236(1)
6.3.3.3 Height of the Activated-Carbon Adsorber
236(1)
6.3.3.4 COC Removal Rate by the Activated- Carbon Adsorber
237(1)
6.3.3.5 Change-Out (or Regeneration) Frequency
237(1)
6.3.3.6 Configuration of the Activated-Carbon Adsorbers
237(3)
6.4 Air Stripping
240(7)
6.4.1 Description of the Air-Stripping Process
240(1)
6.4.2 Design of an Air-Stripping System
241(6)
6.4.2.1 Column Diameter
244(1)
6.4.2.2 Packing Height
244(3)
6.5 Ex Situ Biological Treatment
247(3)
6.5.1 Description of the Ex Situ Biological Treatment Process
247(1)
6.5.2 Design of an Aboveground Biological System
248(2)
6.6 In Situ Groundwater Remediation
250(6)
6.6.1 Description of the In Situ Bioremediation Process
250(1)
6.6.2 Addition of Oxygen to Enhance Biodegradation
250(4)
6.6.3 Addition of Nutrients to Enhance Biodegradation
254(2)
6.7 Air Sparging
256(6)
6.7.1 Description of the Air-Sparging Process
256(1)
6.7.2 Oxygen Addition from Air Sparging
256(2)
6.7.3 Injection Pressure of Air Sparging
258(2)
6.7.4 Power Requirement for Air Injection
260(2)
6.8 Biosparging
262(1)
6.9 Metal Removal by Chemical Precipitation
262(2)
6.10 In Situ Chemical Oxidation
264(2)
6.11 Advanced Oxidation Process
266(2)
References
268(1)
7 VOC-Laden Air Treatment 269(28)
7.1 Introduction
269(1)
7.2 Activated-Carbon Adsorption
269(9)
7.2.1 Description of the Activated-Carbon Adsorption Process
269(1)
7.2.2 Sizing Criteria for Granular Activated Carbon
270(1)
7.2.3 Adsorption Isotherm and Adsorption Capacity
270(3)
7.2.4 Cross-Sectional Area and Height of GAC Adsorbers
273(2)
7.2.5 COC Removal Rate by an Activated-Carbon Adsorber
275(1)
7.2.6 Change-Out (or Regeneration) Frequency
276(1)
7.2.7 Amount of Carbon Required (On-Site Regeneration)
277(1)
7.3 Thermal Oxidation
278(12)
7.3.1 Air Flow Rate versus Temperature
278(2)
7.3.2 Heating Value of an Air Stream
280(2)
7.3.3 Dilution Air
282(3)
7.3.4 Auxiliary Air
285(1)
7.3.5 Supplementary Fuel Requirements
286(2)
7.3.6 Volume of the Combustion Chamber
288(2)
7.4 Catalytic Incineration
290(3)
7.4.1 Dilution Air
290(1)
7.4.2 Supplementary Heat Requirements
291(1)
7.4.3 Volume of the Catalyst Bed
292(1)
7.5 Internal Combustion Engines
293(1)
7.6 Soil Beds/Biofilters
294(2)
References
296(1)
Index 297
Jeff (Jih-Fen) Kuo, PhD, PE worked in the environmental engineering industry for more than ten years before joining the Department of Civil and Environmental Engineering at California State University, Fullerton in 1995. His industrial experience in environmental engineering includes design and installation of air strippers, activated-carbon adsorbers, soil vapor extraction systems, bioremediation systems, and flare/catalytic incinerators for groundwater and soil remediation. Dr. Kuo earned a BS degree in chemical engineering from National Taiwan University, an MS in chemical engineering from the University of Wyoming, an MS in petroleum engineering, and an MS and a PhD in environmental engineering from the University of Southern California. He is a registered civil, chemical, and mechanical engineer in California.