Preface |
|
ix | |
Acknowledgments |
|
xi | |
|
1 Introduction and Background |
|
|
|
1.1 Electroencephalography |
|
|
1 | (4) |
|
|
5 | (5) |
|
|
10 | (3) |
|
|
13 | (3) |
|
|
16 | (1) |
|
1.6 Other Biomedical Signals |
|
|
17 | (1) |
|
1.6.1 The Electroneurogram |
|
|
17 | (1) |
|
1.6.2 The Electroretinogram |
|
|
17 | (1) |
|
1.6.3 The Electrooculogram |
|
|
18 | (1) |
|
1.6.4 The Eleclrogastrogram |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.7 Machine Learning Methods |
|
|
18 | (1) |
|
|
19 | (8) |
|
|
|
2.1 The Electroencephalogram |
|
|
27 | (21) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
2.1.4 Electroencephalography |
|
|
27 | (2) |
|
2.1.5 Historical Perspective |
|
|
29 | (1) |
|
2.1.6 EEG Recording Techniques |
|
|
29 | (2) |
|
2.1.7 The EEG Measured on the Scalp |
|
|
31 | (1) |
|
2.1.8 EEG Rhythms and Waveforms |
|
|
31 | (1) |
|
2.1.9 Uses of EEG Signals in Epileptic Seizure Detection and Prediction |
|
|
32 | (5) |
|
2.1.10 Uses of EEG Signals in Brain-Computer Interfacing |
|
|
37 | (3) |
|
2.1.11 Uses of EEG Signals in Migraine Detection |
|
|
40 | (1) |
|
2.1.12 Uses of EEG Signals in Source Localization |
|
|
41 | (2) |
|
2.1.13 Uses of EEG Signals in Sleep |
|
|
43 | (3) |
|
2.1.14 Uses of EEG Signal for Emotion Recognition |
|
|
46 | (2) |
|
2.1.15 Freiburg LEG Database for Epileptic Seizure Prediction and Detection |
|
|
48 | (1) |
|
|
48 | (14) |
|
|
48 | (1) |
|
2.2.2 The Electromyograph and Instrumentation |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
2.2.5 Signal Amplification and Tillering |
|
|
50 | (1) |
|
2.2.6 Signal Digitization |
|
|
50 | (1) |
|
2.2.7 The Motor Unit Action Potential |
|
|
51 | (2) |
|
2.2.8 Myoelectric Signal Recording |
|
|
53 | (1) |
|
2.2.9 Neuromuscular Disorders |
|
|
54 | (1) |
|
2.2.10 Uses of EMG Signals in Diagnosis of Neuromuscular Disorders |
|
|
55 | (1) |
|
2.2.11 Uses of EMG Signals in Prosthesis Control |
|
|
56 | (3) |
|
2.2.12 Uses of EMG Signals in Rehabilitation Robotics |
|
|
59 | (3) |
|
2.2.13 Other EMG Applications |
|
|
62 | (1) |
|
2.3 The Electrocardiogram |
|
|
62 | (12) |
|
|
62 | (1) |
|
2.3.2 Electrocardiogram Signals |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
2.3.6 Uses of ECG Signals in Diagnosis of Heart Arrhythmia |
|
|
65 | (4) |
|
2.3.7 Uses of ECG Signals in Congestive Heart Failure Detection |
|
|
69 | (2) |
|
2.3.8 Uses of ECG Signals in Sleep Apnea Detection |
|
|
71 | (1) |
|
2.3.9 Uses of ECG Signals in Fetal Analysis |
|
|
72 | (2) |
|
|
74 | (5) |
|
|
74 | (1) |
|
2.4.2 First Heart Sound (S1) |
|
|
74 | (1) |
|
2.4.3 Second Heart Sound (S2) |
|
|
75 | (1) |
|
2.4.4 Third Heart Sound (S3) |
|
|
76 | (1) |
|
2.4.5 Fourth Heart Sound (S4) |
|
|
76 | (1) |
|
2.4.6 Uses of PCG Signals in Diagnosis of Heart Diseases |
|
|
76 | (3) |
|
|
79 | (2) |
|
2.6 Other Biomedical Signals |
|
|
81 | (1) |
|
|
1 | (80) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (5) |
|
|
87 | (2) |
|
3 Biomedical Signal Processing Techniques |
|
|
|
3.1 Introduction to Spectral Analysis |
|
|
89 | (1) |
|
3.2 Power Spectral Density |
|
|
89 | (16) |
|
3.2.1 Continuous-Time Fourier Series Analysis |
|
|
89 | (1) |
|
3.2.2 Discrete-Time Fourier Series Analysis |
|
|
90 | (6) |
|
3.2.3 Frequency Resolution |
|
|
96 | (2) |
|
3.2.4 Windowing Techniques |
|
|
98 | (1) |
|
3.2.5 Periodogram Power Spectral Density |
|
|
98 | (6) |
|
3.2.6 Welch Power Spectral Density |
|
|
104 | (1) |
|
3.3 Parametric Model-Based Methods |
|
|
105 | (25) |
|
3.3.1 Autoregressive Model for Spectral Analysis |
|
|
111 | (1) |
|
3.3.2 Yule-Walker AR Modeling |
|
|
112 | (7) |
|
|
119 | (7) |
|
3.3.4 Modified Covariance Method |
|
|
126 | (1) |
|
|
127 | (3) |
|
3.4 Subspace-Based Methods for Spectral Analysis |
|
|
130 | (4) |
|
|
130 | (2) |
|
3.4.2 Eigenvector Modeling |
|
|
132 | (2) |
|
3.5 Time-Frequency Analysis |
|
|
134 | (56) |
|
3.5.1 Short-Time Fourier Transform: The Spectrogram |
|
|
135 | (2) |
|
3.5.2 Wigner-Ville Distribution |
|
|
137 | (3) |
|
3.5.3 Choi-Williams Distribution |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (1) |
|
3.5.6 Continuous Wavelet Transform |
|
|
143 | (2) |
|
3.5.7 Discrete Wavelet Transform |
|
|
145 | (3) |
|
3.5.8 Stationary Wavelet Transform |
|
|
148 | (5) |
|
3.5.9 Wavelet Packet Decomposition |
|
|
153 | (2) |
|
3.5.10 Dual Tree Complex Wavelet Transform |
|
|
155 | (7) |
|
3.5.11 Tunable Q-Factor Wavelet Transform |
|
|
162 | (2) |
|
3.5.12 Flexible Analytic Wavelet Transform |
|
|
164 | (5) |
|
3.5.13 Empirical Wavelet Transform |
|
|
169 | (5) |
|
3.5.14 Empirical Mode Decomposition |
|
|
174 | (6) |
|
3.5.15 Ensemble Empirical Mode Decomposition |
|
|
180 | (3) |
|
3.5.16 Complete Ensemble Empirical Mode Decomposition |
|
|
183 | (7) |
|
|
190 | (3) |
|
4 Feature Extraction and Dimension Reduction |
|
|
|
|
193 | (1) |
|
4.2 Feature Extraction Methods |
|
|
194 | (5) |
|
4.2.1 Examples for Feature Extraction |
|
|
194 | (5) |
|
4.3 Dimension Reduction/Feature Selection Methods |
|
|
199 | (72) |
|
4.3.1 Statistical Features |
|
|
199 | (1) |
|
4.3.2 Examples With Statistical Features |
|
|
200 | (60) |
|
|
260 | (1) |
|
|
260 | (1) |
|
4.3.5 Approximate and Sample Entropy |
|
|
260 | (1) |
|
4.3.6 Detrended Fluctuation Analysis |
|
|
261 | (6) |
|
4.3.7 Principal Component Analysis |
|
|
267 | (2) |
|
4.3.8 Independent Component Analysis |
|
|
269 | (1) |
|
4.3.9 Linear Discriminant Analysis |
|
|
270 | (1) |
|
4.4 Electrocardiogram Signal Preprocessing |
|
|
271 | (4) |
|
4.4.1 QRS Detection Algorithms |
|
|
272 | (3) |
|
|
275 | (2) |
|
5 Biomedical Signal Classification Methods |
|
|
|
|
277 | (1) |
|
5.2 Performance Evaluation Metrics |
|
|
277 | (4) |
|
5.3 Linear Discriminant Analysis |
|
|
281 | (19) |
|
|
300 | (14) |
|
|
314 | (12) |
|
5.6 Artificial Neural Networks |
|
|
326 | (48) |
|
5.7 Support Vector Machines |
|
|
374 | (16) |
|
|
390 | (20) |
|
|
410 | (24) |
|
|
434 | (1) |
Index |
|
435 | |