Atjaunināt sīkdatņu piekrišanu

Practical Time Series Analysis in Natural Sciences 2023 ed. [Hardback]

  • Formāts: Hardback, 199 pages, height x width: 235x155 mm, weight: 527 g, 97 Illustrations, black and white; XI, 199 p. 97 illus., 1 Hardback
  • Sērija : Progress in Geophysics
  • Izdošanas datums: 10-Mar-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031168909
  • ISBN-13: 9783031168901
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 127,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 149,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 199 pages, height x width: 235x155 mm, weight: 527 g, 97 Illustrations, black and white; XI, 199 p. 97 illus., 1 Hardback
  • Sērija : Progress in Geophysics
  • Izdošanas datums: 10-Mar-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031168909
  • ISBN-13: 9783031168901
Citas grāmatas par šo tēmu:

This book presents an easy-to-use tool for time series analysis and allows the user to concentrate upon studying time series properties rather than upon how to calculate the necessary estimates. The two attached programs provide, in one run of the program, a time and frequency domain description of scalar or multivariate time series approximated with a sequence of autoregressive models of increasing orders. The optimal orders are chosen by five order selection criteria. The results for scalar time series include time domain stochastic difference equations, spectral density estimates, predictability properties, and a forecast of scalar time series based upon the Kolmogorov-Wiener theory. For the bivariate and trivariate time series, the results contain a time domain description with multivariate stochastic difference equations, statistical predictability criterion, and information for calculating feedback and Granger causality properties in the bivariate case. The frequency domain information includes spectral densities, ordinary, multiple, and partial coherence functions, ordinary and multiple coherent spectra, gain, phase, and time lag factors. The programs seem to be unique and using them does not require professional knowledge of theory of random processes. The book contains many examples including three from engineering.


Chapter
1. Introduction.
Chapter
2. Scalar time series.- Chapter
3.
Bivariate time series analysis.
Chapter
4. Analysis of trivariate time
series.
Chapter
5. Conclusions and recommendations.