Atjaunināt sīkdatņu piekrišanu

Precision Motion Systems: Modeling, Control, and Applications [Mīkstie vāki]

, (School of Astronautics, Northwestern Polytechnical University), (Department of Electronic and Information Engineering, Southwest), , (Associate Professor, School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology)
  • Formāts: Paperback / softback, 288 pages, height x width: 229x152 mm, weight: 480 g, Approx. 250 illustrations; Illustrations, unspecified
  • Izdošanas datums: 18-May-2019
  • Izdevniecība: Butterworth-Heinemann Inc
  • ISBN-10: 0128186011
  • ISBN-13: 9780128186015
  • Mīkstie vāki
  • Cena: 165,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 288 pages, height x width: 229x152 mm, weight: 480 g, Approx. 250 illustrations; Illustrations, unspecified
  • Izdošanas datums: 18-May-2019
  • Izdevniecība: Butterworth-Heinemann Inc
  • ISBN-10: 0128186011
  • ISBN-13: 9780128186015

Precision Motion Systems: Modeling, Control, and Applications presents basic dynamics and the control knowledge needed for the daily challenges of researchers and professionals working in the field. The book explains accurate dynamics and control algorithms, along with experimental validation of precision systems in industrial, medical, airborne and spaceborne applications. By using the proposed experimental designs, readers will be able to make further developments and validations.

  • Presents accurate dynamics and control algorithms in industrial, medical, airborne and spaceborne applications
  • Explains basic dynamics and control knowledge, such as Laplace transformations and stability analysis
  • Teaches how to design, develop and control typical precision systems
Contributors xi
About the Author xv
Preface xvii
Acknowledgment xix
1 Introduction
1(12)
Lei Liu
Jian Liang
References
8(5)
2 Constrained linear quadratic optimization for jerk-decoupling cartridge design
13(24)
Jun Ma
Si-Lu Chen
Chek Sing Teo
Chun Jeng Kong
Arthur Tay
Wei Lin
Abdullah Al Mamun
2.1 Introduction
14(1)
2.2 Modeling of the linear feed drive with JDC
14(3)
2.3 Parameter optimization via linear quadratic formulation
17(4)
2.3.1 Linear quadratic formulation
17(3)
2.3.2 Initialization of the optimization problem
20(1)
2.4 Gradient-based constrained optimization algorithm
21(7)
2.5 Simulation
28(5)
2.6 Conclusions
33(4)
References
35(2)
3 A limited angle torque actuator with cylindrical Halbach and its large angle tracking control
37(20)
Si-Lu Chen
Nazir Kamaldin
Tat Joo Teo
Wenyu Liang
Chek Sing Teo
Guilin Yang
Kok Kiong Tan
3.1 Introduction
38(1)
3.2 LAT actuator with cylindrical Halbach
38(2)
3.2.1 Actuator design and experiment setup
38(1)
3.2.2 Advantage of the LAT motor with cylindrical Halbach design
39(1)
3.3 Modeling and identification with dual-relay feedback
40(4)
3.3.1 Modeling of the LAT actuator
40(2)
3.3.2 Parameter identification
42(2)
3.4 Robust output feedback tracking controller design
44(10)
3.4.1 Robust state-feedback controller
44(2)
3.4.2 Output feedback controller with a nonlinear HGO
46(8)
3.5 Experiment validation
54(2)
3.6 Conclusions
56(1)
References
56(1)
4 Precision motion tracking of piezoelectric actuator using sampled-data iterative learning control
57(24)
Deqing Huang
Jianxin Xu
Yupei Jian
Da Min
4.1 Introduction
58(1)
4.2 Experimental setup and dynamic modeling
59(3)
4.2.1 Experimental setup
59(1)
4.2.2 Resolution of the ADC and DAC channels
60(2)
4.2.3 Dynamic modeling
62(1)
4.3 Performance of feedforward and feedback control
62(5)
4.3.1 Feedforward control
62(2)
4.3.2 Feedback control
64(3)
4.4 Design of iterative learning controller
67(6)
4.4.1 Structure of sampled-data ILC
67(2)
4.4.2 Selection of filters Q(z) and L(z)
69(2)
4.4.3 Robust design
71(2)
4.5 Experimental validation of ILC
73(4)
4.5.1 ILC started from feedforward control
75(1)
4.5.2 ILC started from feedback control
76(1)
4.6 Conclusions
77(4)
References
79(2)
5 High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis
81(18)
Deqing Huang
Jianxin Xu
Yupei Jian
Da Min
5.l Introduction
82(1)
5.2 Dynamic hysteresis modeling of PEA
83(2)
5.2.1 Bouc~Wen model and its inversion
84(1)
5.2.2 ARX model
85(1)
5.3 Model validation
85(4)
5.3.1 Experimental setup
86(1)
5.3.2 Parameter identification
86(3)
5.4 Performance of the inverse compensation
89(2)
5.4.1 Pure PI Control
89(1)
5.4.2 PI control with direct inverse compensate of hysteresis
90(1)
5.5 Design of sampled-data ILC
91(3)
5.5.1 Structure of sampled-data ILC
92(1)
5.5.2 Considerations for selection of Q(z) and L(z)
93(1)
5.6 Experimental validation of ILC
94(1)
5.7 Conclusions
95(4)
References
97(2)
6 Design, modeling, measurement and control of an precision APT system
99(26)
Qing Li
Lei Liu
6.1 Design
100(1)
6.2 Modeling
100(11)
6.2.1 Dynamics modeling of the coarse tracking subsystem
100(6)
6.2.2 Dynamics modeling of the fine tracking subsystem
106(5)
6.3 Measurement
111(1)
6.4 Controller design of the APT system
112(2)
6.4.1 Controller design of the coarse tracking subsystem
112(1)
6.4.2 Controller design of the fine tracking subsystem
113(1)
6.5 Simulation of the composite axis controller
114(5)
6.5.1 Simulation parameters
115(1)
6.5.2 Simulation results
116(3)
6.6 Experimental studies
119(5)
6.6.1 Experimental set up
120(1)
6.6.2 Experimental results
121(3)
6.7 Conclusions
124(1)
7 Accurate modeling and suppression of microvibrations in precision spacecraft
125(20)
Jian Liang
Hai Yun
Lei Liu
7.1 Modeling
125(4)
7.2 Passive vibration isolation
129(2)
7.3 Active vibration isolation
131(2)
7.3.1 Adaptive LMS algorithm
131(1)
7.3.2 Active vibration isolation based on the adaptive LMS
132(1)
7.4 Simulation analysis
133(3)
7.5 Experimental verification
136(6)
7.5.1 Active isolator design
137(2)
7.5.2 Experiment results
139(3)
7.6 Conclusions
142(3)
References
143(2)
8 Modeling and robust control of spacecraft with flexible attachment
145(18)
Hongjie Yang
Lei Liu
8.1 Modeling
145(8)
8.1.1 Dynamics equations of the spacecraft with flexible attachment
147(2)
8.1.2 Modal analysis for the flexible attachment
149(2)
8.1.3 Dynamics equations in mixed reference frames
151(2)
8.2 Robust controller design
153(2)
8.3 Simulation
155(6)
8.4 Conclusions
161(2)
References
162(1)
9 Dynamics analysis and control of a spacecraft mechanism with joint clearance and thermal effect
163(54)
Bindi You
Dong Liang
Yang Zhao
Hao Tian
Huibo Zhang
XiangjieYu
Xiaolei Wen
9.1 Dynamics modeling of satellite antenna system
164(2)
9.2 Dynamics control for a spacecraft mechanism with nonlinear factors
166(17)
9.2.1 Rigid-flexible coupling dynamics modeling for satellite antenna system
166(9)
9.2.2 Vibration suppression for the antenna
175(3)
9.2.3 Simulation studies
178(5)
9.3 Nonlinear dynamics analysis with joint clearance
183(12)
9.3.1 Dynamics error modeling in a flexible joint
183(4)
9.3.2 Satellite antenna pointing tracking control
187(2)
9.3.3 Simulation studies
189(6)
9.4 Nonlinear dynamics analysis with thermal effect
195(16)
9.4.1 Heat conduction equations for flexible reflector
195(5)
9.4.2 Coupling dynamics model considering thermal loaded
200(2)
9.4.3 Adaptive controller design with uncertain disturbance
202(3)
9.4.4 Simulation studies
205(6)
9.5 Conclusions
211(6)
References
214(3)
10 Dynamics modeling of flexible multibody structure for a spacecraft mechanism with nonlinear factors
217(44)
Bindi You
Dong Liang
Zhihui Gao
Yiming Sun
Peibo Hao
Jianmin Wen
Yang Zhao
10.1 Formulation for a laminated composite beam with a large scale motion
218(11)
10.1.1 Deformation description
218(5)
10.1.2 Displacement-stress equations of a laminated composite beam
223(2)
10.1.3 Rigid-flexible coupled dynamics modeling
225(4)
10.2 Formulation for a deployment and locking mechanism with flexible laminated composite appendages
229(14)
10.2.1 Rigid-flexible coupled dynamics modeling
229(10)
10.2.2 The effect of contact-impact in the locking hinge
239(4)
10.3 Numerical simulations
243(14)
10.3.1 Large range motion simulation of composite laminated beam
243(8)
10.3.2 Deployment and locking process with flexible laminated composite appendages
251(6)
10.4 Conclusions
257(4)
References
259(2)
Index 261
His research interests include dynamics and precision control of space structures. His research interests include mechanical design and dynamics analysis of space complex structures, such as space antennas, space robotics. His research interests include learning control and applications in piezoelectric precision systems. His research interests include precision motion and advanced robotics. His research interests include design and development of ultra precision systems, accurate modelling and control of piezoelectric systems, microvibration and active control.