Atjaunināt sīkdatņu piekrišanu

Prediction and Classification of Respiratory Motion Softcover reprint of the original 1st ed. 2014 [Mīkstie vāki]

  • Formāts: Paperback / softback, 167 pages, height x width: 235x155 mm, weight: 2818 g, 65 Illustrations, color; 2 Illustrations, black and white; IX, 167 p. 67 illus., 65 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 525
  • Izdošanas datums: 27-Aug-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662510642
  • ISBN-13: 9783662510643
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 167 pages, height x width: 235x155 mm, weight: 2818 g, 65 Illustrations, color; 2 Illustrations, black and white; IX, 167 p. 67 illus., 65 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 525
  • Izdošanas datums: 27-Aug-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662510642
  • ISBN-13: 9783662510643
Citas grāmatas par šo tēmu:

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems.

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.



This book examines current radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. The proposed method improves treatments by considering breathing pattern for accurate dose calculation.
Review: Prediction of Respiratory Motion.- Phantom: Prediction of Human Motion with Distributed Body Sensors.- Respiratory Motion Estimation with Hybrid Implementation.- Customized Prediction of Respiratory Motion.- Irregular Breathing Classification from Multiple Patient Datasets.- Conclusions and Contributions.