Atjaunināt sīkdatņu piekrišanu

E-grāmata: PRICAI 2024: Trends in Artificial Intelligence: 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, Kyoto, Japan, November 18-24, 2024, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The five-volume proceedings set LNAI 15281-15285, constitutes the refereed proceedings of the 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, held in Kyoto, Japan, in November 1824, 2024.





The 145 full papers and 35 short papers included in this book were carefully reviewed and selected from 543 submissions. 





The papers are organized in the following topical sections:





Part I: Machine Learning, Deep Learning





Part II: Deep Learning, Federated Learning, Generative AI, Natural Language Processing, Large Language Models, 





Part III: Large Language Models, Computer Vision





Part IV: Computer Vision, Autonomous Driving, Agents and Multiagent Systems, Knowledge Graphs, Speech Processing, Optimization





Part V: Optimization, General Applications, Medical Applications, Theoretical Foundations of AI
.- Large Language Models.

.- MLRQA: A Dataset with Multimodal Logical Reasoning Challenges.

.- Fame Bias Large Language Models Change Their Judgement Depending on
Personal Name.

.- Distributed Population-based Simultaneous Perturbation Stochastic
Approximation for Fine-Tuning Large Language Models.

.- Transformer-Mamba-based Trident-Branch RGB-T Tracker.

.- MMAT: Multi-scale Multi-Attention Transformer for Fine-grained Wild Fungi
Visual Classification.

.- Enhancing Parameter-Efficient Transformers with Contrastive Syntax and
Regularized .- Dropout for Neural Machine Translation.

.- Computer Vision.

.- DB-FSCIL: Few-Shot Class-Incremental Learning Using Dual Bridges.

.- GMMotion: Neighborhood Information Matters for Online Multi-Pedestrian
Tracking.

.- Predicting Plain Text Imageability for Faithful Prompt-Conditional Image
Generation.

.- BFNet: A Bi-Frequency Fusion Semantic Segmentation Network for
High-Resolution Remote Sensing Images.

.- An improved model of detecting ground military targets from horizontal
view.

.- A Copy-Paste Data Augmentation Method For Urban Tree Detection.

.- A Novel Geometric-Encoded and Feature-Fused Model for Pressure
Distribution Prediction on Airfoils.

.- Artificial Intelligence-Guided Fully-Automatic Renal Segmentation.

.- Integrating Vision-Tool to Enhance Visual-Question-Answering in Special
Domains.

.- AGLTN: Attention-Based Global-Local Transformer Network for Ultra-High
Resolution Images.

.- GAMF-Net: A Lightweight Network for Semantic Segmentation of Land Cover
Recognition in Open-Pit Coal Mining Areas.

.- Action Recognition Based on Multi-Perspective Feature Excitation.

.- HQPAFT: Enhancing Low-Light Images with High-Quality Priors and Advanced
Feature  Transformations Using Only Normal Light Images.

.- A Reversible Data Hiding in Encryption Domain for JPEG Image Based on
Controllable  Ciphertext Range of Paillier Homomorphic Encryption Algorithm.

.- BEVTemp: Enhancing Vision-based Roadside 3D Object Detection with Temporal
Information.

.- CPNet: Controllable Point Cloud Generation Network Using Part-Level
Information.

.- AffViT: Fast Affine Medical Image Registration with Convolutional Vision
Transformer.

.- An Instance and Cloud Masks Guided Multi-source Fusion Network for Remote
Sensing Object Detection.

.- Image Gradient-Aided Photometric Stereo Network.

.- Enhancing Object Detection Accuracy with Hybrid Supervision and
Trans-stage Interaction.

.- Adaptive Threshold-Driven Semi-Supervised Facial Expression Recognition.

.- 3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster
Convergence.

.- AF-SSD:Self-Attention Fusion Sampling and Fuzzy Classification for
Enhanced Small Object Detection.

.- A Facial Expression Recognition Model Based on a Hybrid Attention
Mechanism with . Multiple Information Spaces and Channels.

.- A Meta-Learning Method for Generalizable Face Forgery Detection.

.- Data-Free Quantization of Vision Transformers through Perturbation Aware
Image Synthesis.

.- HMM-VMamba: High-order Morphological Method Vision Mamba for Medical Image
Segmentation.

.- Evaluating Subtle PositiveNegative Facial Expression Transitions for
Monitoring Changes in Personal Internal States.

.- Image Generation Method for Addressing Class Imbalance in Small-Sample
Pulsar Candidates.

.- Efficient Matrix-Based Multi-View Projection Features Combined for
Multi-Modal 3D Semantic Segmentation.

.- Enhancing Multimodal Rumor Detection with Statistical Image Features and
Modal  Alignment via Contrastive Learning.

.- Audio-Driven Face Photo-Sketch Video Generation.

.- A Decoupling Video Frame Selection Method for Action Recognition.