Atjaunināt sīkdatņu piekrišanu

Primality Testing for Beginners [Mīkstie vāki]

  • Formāts: Paperback / softback, 244 pages, weight: 320 g
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jan-2014
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821898833
  • ISBN-13: 9780821898833
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 69,02 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 244 pages, weight: 320 g
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jan-2014
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821898833
  • ISBN-13: 9780821898833
Citas grāmatas par šo tēmu:
How can you tell whether a number is prime? What if the number has hundreds or thousands of digits? This question may seem abstract or irrelevant, but in fact, primality tests are performed every time we make a secure online transaction. In 2002, Agrawal, Kayal, and Saxena answered a long-standing open question in this context by presenting a deterministic test (the AKS algorithm) with polynomial running time that checks whether a number is prime or not. What is more, their methods are essentially elementary, providing us with a unique opportunity to give a complete explanation of a current mathematical breakthrough to a wide audience.

Rempe-Gillen and Waldecker introduce the aspects of number theory, algorithm theory, and cryptography that are relevant for the AKS algorithm and explain in detail why and how this test works. This book is specifically designed to make the reader familiar with the background that is necessary to appreciate the AKS algorithm and begins at a level that is suitable for secondary school students, teachers, and interested amateurs. Throughout the book, the reader becomes involved in the topic by means of numerous exercises.

Recenzijas

The authors can be congratulated on making an important recent result accessible to a very wide audience." - Ch. Baxa, Monatsh Math

Preface xi
Introduction 1(12)
Part
1. Foundations
Chapter 1 Natural numbers and primes
13(30)
1.1 The natural numbers
13(13)
1.2 Divisibility and primes
26(5)
1.3 Prime factor decomposition
31(4)
1.4 The Euclidean algorithm
35(4)
1.5 The Sieve of Eratosthenes
39(2)
1.6 There are infinitely many primes
41(1)
Further reading
42(1)
Chapter 2 Algorithms and complexity
43(40)
2.1 Algorithms
43(9)
2.2 Decidable and undecidable problems
52(5)
2.3 Complexity of algorithms and the class P
57(11)
2.4 The class NP
68(5)
2.5 Randomized algorithms
73(8)
Further reading
81(2)
Chapter 3 Foundations of number theory
83(46)
3.1 Modular arithmetic
84(10)
3.2 Fermat's Little Theorem
94(10)
3.3 A first primality test
104(3)
3.4 Polynomials
107(13)
3.5 Polynomials and modular arithmetic
120(7)
Further reading
127(2)
Chapter 4 Prime numbers and cryptography
129(24)
4.1 Cryptography
129(3)
4.2 RSA
132(4)
4.3 Distribution of primes
136(3)
4.4 Proof of the weak prime number theorem
139(4)
4.5 Randomized primality tests
143(7)
Further reading
150(3)
Part
2. The AKS Algorithm
Chapter 5 The starting point: Fermat for polynomials
153(16)
5.1 A generalization of Fermat's Theorem
153(6)
5.2 The idea of the AKS algorithm
159(4)
5.3 The Agrawal-Biswas test
163(6)
Chapter 6 The theorem of Agrawal, Kayal, and Saxena
169(14)
6.1 Statement of the theorem
170(1)
6.2 The idea of the proof
171(2)
6.3 The number of polynomials in P
173(5)
6.4 Cyclotomic polynomials
178(5)
Chapter 7 The algorithm
183(10)
7.1 How quickly does the order of n modulo r grow?
183(3)
7.2 The algorithm of Agrawal, Kayal, and Saxena
186(3)
7.3 Further comments
189(3)
Further reading
192(1)
Appendix A. Open questions 193(14)
Further reading
205(2)
Appendix B. Solutions and comments to important exercises 207(26)
Bibliography 233(4)
List of symbols 237(2)
Index 239
Lasse Rempe-Gillen, University of Liverpool, UK

Rebecca Waldecker, Martin-Luther-Universitat Halle-Wittenberg, Germany