Preface |
|
xi | |
Notation |
|
xiii | |
|
|
1 | (24) |
|
|
1 | (3) |
|
1.2 The Sieve of Eratosthenes |
|
|
4 | (2) |
|
1.3 The Sieve of Eratosthenes-Legendre |
|
|
6 | (2) |
|
1.4 The Prime Number Theorem and Its Consequences |
|
|
8 | (10) |
|
1.5 Brun, Selberg, and Rosser-Iwaniec |
|
|
18 | (2) |
|
1.6 Eratosthenes-Legendre-Vinogradov |
|
|
20 | (5) |
|
Chapter 2 The Vaughan Identity |
|
|
25 | (22) |
|
|
25 | (3) |
|
2.2 An Exponential Sum over Primes |
|
|
28 | (1) |
|
2.3 The Distribution of αp Modulo 1 |
|
|
29 | (4) |
|
2.4 The Bombieri-Vinogradov Theorem |
|
|
33 | (5) |
|
2.5 Linnik's and Heath-Brown's Identities |
|
|
38 | (4) |
|
2.6 Further Thoughts on Vaughan's Identity |
|
|
42 | (5) |
|
Chapter 3 The Alternative Sieve |
|
|
47 | (18) |
|
|
47 | (2) |
|
|
49 | (1) |
|
3.3 The Fundamental Theorem |
|
|
50 | (4) |
|
3.4 Application to the Distribution of {αp} |
|
|
54 | (2) |
|
|
56 | (4) |
|
|
60 | (2) |
|
3.7 The Piatetski-Shapiro PNT |
|
|
62 | (1) |
|
|
63 | (2) |
|
Chapter 4 The Rosser-Iwaniec Sieve |
|
|
65 | (18) |
|
|
65 | (2) |
|
|
67 | (5) |
|
|
72 | (1) |
|
4.4 Proof of the Lower-Bound Sieve |
|
|
73 | (6) |
|
4.5 Developments of the Rosser-Iwaniec Sieve |
|
|
79 | (4) |
|
Chapter 5 Developing the Alternative Sieve |
|
|
83 | (20) |
|
|
83 | (1) |
|
5.2 New Forms of the Fundamental Theorem |
|
|
83 | (3) |
|
|
86 | (5) |
|
|
91 | (1) |
|
5.5 Higher-Dimensional Versions |
|
|
92 | (1) |
|
5.6 Greatest Prime Factors |
|
|
93 | (10) |
|
Chapter 6 An Upper-Bound Sieve |
|
|
103 | (16) |
|
|
103 | (2) |
|
6.2 A Device by Chebychev |
|
|
105 | (2) |
|
6.3 The Arithmetical Information |
|
|
107 | (3) |
|
6.4 Applying the Rosser-Iwaniec Sieve |
|
|
110 | (2) |
|
6.5 An Asymptotic Formula |
|
|
112 | (1) |
|
6.6 The Alternative Sieve Applied |
|
|
112 | (3) |
|
6.7 Upper-Bounds: Region by Region |
|
|
115 | (3) |
|
6.8 Why a Previous Idea Fails |
|
|
118 | (1) |
|
Chapter 7 Primes in Short Intervals |
|
|
119 | (38) |
|
7.1 The Zero-Density Approach |
|
|
119 | (2) |
|
|
121 | (7) |
|
|
128 | (5) |
|
|
133 | (2) |
|
7.5 Application of Watt's Theorem |
|
|
135 | (4) |
|
7.6 Sieve Asymptotic Formulae |
|
|
139 | (4) |
|
7.7 The Two-Dimensional Sieve Revisited |
|
|
143 | (4) |
|
7.8 Further Asymptotic Formulae |
|
|
147 | (3) |
|
7.9 The Final Decomposition |
|
|
150 | (5) |
|
|
155 | (2) |
|
Chapter 8 The Brun-Titchmarsh Theorem on Average |
|
|
157 | (32) |
|
|
157 | (2) |
|
8.2 The Arithmetical Information |
|
|
159 | (6) |
|
8.3 The Alternative Sieve Applied |
|
|
165 | (7) |
|
8.4 The Alternative Sieve for τ ≤ α1 ≤ 3/7, θ ≤ 11/21 |
|
|
172 | (2) |
|
8.5 The Alternative Sieve in Two Dimensions |
|
|
174 | (4) |
|
8.6 The Alternative Sieve in Three Dimensions |
|
|
178 | (4) |
|
8.7 An Upper Bound for Large θ |
|
|
182 | (1) |
|
|
183 | (6) |
|
Chapter 9 Primes in Almost All Intervals |
|
|
189 | (12) |
|
|
189 | (2) |
|
9.2 The Arithmetical Information |
|
|
191 | (4) |
|
9.3 The Alternative Sieve Applied |
|
|
195 | (3) |
|
9.4 The Final Decomposition |
|
|
198 | (1) |
|
9.5 An Upper-Bound Result |
|
|
199 | (1) |
|
9.6 Other Measures of Gaps Between Primes |
|
|
200 | (1) |
|
Chapter 10 Combination with the Vector Sieve |
|
|
201 | (30) |
|
|
201 | (1) |
|
10.2 Goldbach Numbers in Short Intervals |
|
|
202 | (3) |
|
10.3 Proof of Theorem 10.2 |
|
|
205 | (6) |
|
10.4 Dirichlet Polynomials |
|
|
211 | (7) |
|
10.5 Sieving the Interval B1 |
|
|
218 | (9) |
|
10.6 Sieving the Intervals B2 |
|
|
227 | (2) |
|
10.7 Further Applications |
|
|
229 | (2) |
|
Chapter 11 Generalizing to Algebraic Number Fields |
|
|
231 | (34) |
|
|
231 | (1) |
|
11.2 Gaussian Primes in Sectors |
|
|
232 | (1) |
|
11.3 Notation and Outline of the Method |
|
|
233 | (4) |
|
11.4 The Arithmetical Information |
|
|
237 | (3) |
|
11.5 Asymptotic Formulae for Problem 1 |
|
|
240 | (4) |
|
11.6 The Final Decomposition for Problem 1 |
|
|
244 | (3) |
|
11.7 Prime Ideals in Small Regions |
|
|
247 | (1) |
|
|
248 | (7) |
|
11.9 Estimates for Dirichlet Polynomials |
|
|
255 | (3) |
|
11.10 Asymptotic Formulae for Problem 2 |
|
|
258 | (2) |
|
11.11 The Final Decomposition for Problem 2 |
|
|
260 | (5) |
|
Chapter 12 Variations on Gaussian Primes |
|
|
265 | (38) |
|
|
265 | (1) |
|
12.2 Outline of the Fouvry-Iwaniec Method |
|
|
266 | (2) |
|
12.3 Some Preliminary Results |
|
|
268 | (5) |
|
12.4 Fouvry-Iwaniec Type I Information |
|
|
273 | (3) |
|
12.5 Reducing the Bilinear Form Problem |
|
|
276 | (3) |
|
12.6 Catching the Cancellation Introduced by μ |
|
|
279 | (5) |
|
12.7 The Main Term for Theorem 12.1 |
|
|
284 | (1) |
|
12.8 The Friedlander-Iwaniec Outline for a2 + b4 |
|
|
285 | (2) |
|
12.9 The Friedlander-Iwaniec Asymptotic Sieve |
|
|
287 | (9) |
|
12.10 Sketch of the Crucial Result |
|
|
296 | (5) |
|
|
301 | (2) |
|
Chapter 13 Primes of the Form x3 + 2y3 |
|
|
303 | (32) |
|
|
303 | (1) |
|
13.2 Outline of the Proof |
|
|
304 | (8) |
|
|
312 | (1) |
|
13.4 The Type I Estimates |
|
|
313 | (3) |
|
13.5 The Fundamental Lemma Result |
|
|
316 | (1) |
|
|
317 | (8) |
|
|
325 | (1) |
|
13.8 The Type II Information Established |
|
|
326 | (9) |
|
|
335 | (2) |
|
|
335 | (1) |
|
14.2 A Challenge with Which to Close |
|
|
336 | (1) |
|
|
337 | (12) |
|
|
337 | (2) |
|
A.2 Buchstab's Function ω(u) |
|
|
339 | (4) |
|
A.3 Large-Sieve Inequalities |
|
|
343 | (3) |
|
A.4 The Mean Value Theorem for Dirichlet Polynomials |
|
|
346 | (1) |
|
|
347 | (2) |
Bibliography |
|
349 | (12) |
Index |
|
361 | |