Atjaunināt sīkdatņu piekrišanu

E-grāmata: Primer in Fluid MechanicsDynamics of Flows in One Space Dimension

(Rensselaer Polytech Institute, Troy, New York, USA)
  • Formāts: 540 pages
  • Izdošanas datums: 01-Nov-2024
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781040282021
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 43,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 540 pages
  • Izdošanas datums: 01-Nov-2024
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781040282021
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This distinctive text presents the basic principles of fluid mechanics by means of one-dimensional flow examples - differing significantly in style and content from other books.

A Primer in Fluid Mechanics contains:

an overview of fluid properties and the kinetic theory of gases

information on the fundamental equations of fluid mechanics, including historical references and background information

introductory discussions on fluid properties and fluid statics

a comprehensive chapter on compressible flow

a variety of applications on non-steady flow, including non-steady gas dynamics

a brief introduction to acoustics

Novel provisos in the text include

an analysis of the static stability of a floating two-dimensional parabolic section

viscous flow through an elastic duct

several geometries in non-steady tank draining, including a singular perturbation problem

Chapters also discuss physical properties, atmospheric stability, thermodynamics, energy and momentum equations, dimensional analysis, and historical perspectives of flows in pipes and conduits.

A Primer in Fluid Mechanics offers a rigorous text for the curious student and for the research engineer seeking a readily available guide to the more refined treatments in the literature - supporting classical and current discussions as well as theoretical and practical concepts.

Recenzijas

"Unique...Meticulously accurate...The author gives a refreshingly original discussion." - Ronald L. Panton, Mechanical Engineering Department, University of Texas at Austin

Fluid Properties --- Kinetic Theory of Gases
1(36)
Introduction
1(2)
Fluid Deformation
1(1)
Nonsimple Fluids
2(1)
Simple Fluids
2(1)
The Macroscopic View of Matter
3(1)
The Solid State
3(1)
The Intermolecular Force Field
3(1)
The Liquid State
4(3)
Melting
4(1)
Evaporation
5(1)
Viscosity
6(1)
On the Kinetic Theory of Gases
7(1)
Mass Density
7(2)
Definition of Density
7(1)
Concept of a Continuum
7(2)
Pressure in a Gas
9(3)
Definition of Mean-Free-Speed
11(1)
Equipartition of Energy
11(1)
Equation of State
12(1)
The Molecular Mean-Free-Path Length
12(3)
The Molecular Diameter
12(1)
Mean-Free-Path Length
13(1)
The Knudsen Number
14(1)
Relation between Fluid Viscosity and Mean-Free-Path Length
15(3)
The Macroscopic Law
15(2)
The Molecular Law
17(1)
On Heat Conduction
18(4)
On the Ratio of Specific Heats of a Perfect Gas
21(1)
On the Units of Viscosity
22(1)
On the Viscosity of Real Gases
23(5)
Sutherland's Viscosity Law for Dilute Gases
25(1)
On the Viscosity of Anomalous Gases
25(1)
On the Viscosity of Dense Gases
25(2)
Viscosity of Gas Mixtures
27(1)
The Heat Conduction Coefficient for Dilute Gases
28(1)
On the Viscosity of Liquids
28(1)
Availability and Future Sources of Fluid Property Data
29(8)
Problems
31(6)
Fluid Statics
37(80)
Introduction
37(1)
Equilibrium and Pressure in a Fluid
37(2)
Classification of Forces
39(1)
Surface Forces
39(1)
Field Forces
39(1)
The Fundamental Equation of Fluid Statics
39(4)
Pressure Forces
40(1)
Body Force
41(1)
Vector Form
42(1)
Potential Body Forces
43(1)
Equation of Fluid Statics for a Uniform Gravitational Field
43(1)
Isobaric Surfaces
44(1)
The Problem of Integrating the Fundamental Equation of Statics
44(1)
Pressure-Height Relation in a Liquid
44(3)
Pressure Variation at an Interface
46(1)
Elementary Pressure-Measuring Instruments
47(2)
The Barometer
47(1)
The U-Tube Manometer
48(1)
Gauge Pressure
48(1)
An Application in Manometry
49(1)
Forces and Moments on Submerged Surfaces
50(6)
Force and Moment on a Flat Vertical Wall
50(4)
Forces on Curved Surfaces
54(2)
Applications to Forces and Moments on Curved Surfaces
56(5)
Example
1. The Forces on a Parabolic Surface
57(2)
Example
2. The Moment on a Circular Arc Gate
59(2)
Forces on Submerged Bodies
61(2)
Archimedes Principle
63(1)
The Concept of Static Stability
63(1)
Application --- Stability of a Buoy
64(4)
Statement of the Problem
64(1)
Equilibrium Condition
64(1)
Moment Equation for an Arbitrary Rotation
65(2)
The Stability Criterion
67(1)
Discussion
67(1)
On the Stability of a Floating Parabolic Segment
68(10)
Historical Note
68(1)
Description
69(1)
Geometry of the Tilted Segment
70(1)
Limiting Value for the Tilt Angle
71(1)
Pressure Distribution on Segment Surface
72(1)
The Differential Buoyancy Force
72(1)
The Hydrostatic Moment
73(1)
Equilibrium
74(1)
The Stability Criterion
75(1)
Discussion
76(2)
Fluid Statics of the Atmosphere
78(2)
Description of the Atmosphere
79(1)
Supplementary Shells
79(1)
U.S. Standard Atmosphere, 1976
80(6)
The Composition of Air
80(1)
Sea-Level Reference Conditions
80(1)
Temperature-Height Relations
80(1)
Temperature-Height Relation in the Troposphere
81(1)
Pressure-Height Relation in the Troposphere
82(1)
Other Standard Atmospheres
83(1)
Four-Dimensional Global Reference Atmosphere Model
83(3)
Concept of Geopotential Height
86(2)
Stability of the Atmosphere
88(4)
Relation for an Adiabatic Displacement
89(1)
The Effect of Misture on Stability
90(2)
Buoyancy in the Atmosphere
92(2)
Application of the Inverse-Square Law of Gravitation: Pressure at the Center of the Earth
94(3)
Structure of Earth
96(1)
Core Pressure of a Constant-Density Earth
96(1)
Surface Tension
97(20)
Introduction
97(3)
A Method to Measure the Surface Tension Coefficient
100(2)
Surface Tension at a Meniscus
102(1)
Capillary Action within a Tube
103(2)
On Energy Methods
105(1)
On Vibrations in Liquids under Surface Tension
105(3)
Problems
108(9)
The Equations of Fluid Dynamics
117(56)
Introduction
117(1)
Concepts from Kinematics
117(5)
Velocity of a Particle
118(1)
Acceleration of a Particle
119(1)
Concept of an Inertial Observer
120(2)
Relating Observed Motion for Two Different Observers
122(1)
Example
122(1)
Kinematics in a Flow Field
123(1)
Time Derivatives and the Substantial Derivative
124(2)
The Substantial Derivative
125(1)
Illustrative Examples
126(3)
Example 1
126(1)
Example 2
127(2)
Example Involving Other Time Derivatives
129(2)
Concept of a One-Dimensional Flow
131(1)
The Postulates of Fluid Dynamics
132(1)
Conservation of Mass
132(1)
Newton's Second Law
132(1)
First Law of Thermodynamics
132(1)
Second Law of Thermodynamics
133(1)
Equations of State
133(1)
The Continuity Equation
133(7)
Discussion
136(2)
Example 1
138(1)
Example 2
138(1)
Example 3
139(1)
Invariance of Continuity Equation under Change of Observer
140(2)
The Dynamic Equation of Motion
142(6)
Surface Forces
143(1)
Body Forces
144(1)
The Dynamic Equation
145(1)
Integrating the Dynamic Equation--Examples
145(3)
The Centrifugal Force Equation
148(1)
On Newton's Second Law
148(2)
Example: Water Droplet Falling in a Vacuum
149(1)
On Concepts from Thermodynamics
150(2)
Systems
150(1)
Temperature
151(1)
Equilibrium
151(1)
Extensive and Intensive Variables
152(1)
The First Law of Thermodynamics
152(4)
Enthalpy
154(1)
First Law for an Arbitrary Observer
154(1)
The Entropy Function
155(1)
Isentropic Flow
156(1)
The Second Law of Thermodynamics
156(1)
The Energy Equation
157(1)
Dissipation and the Role of Friction
158(3)
Dissipation Due to Solid Friction
159(1)
Nondissipative Work Performed by Friction Forces
159(1)
Dissipation in a Fluid Flow--Fixed Wall
159(1)
Dissipation in a Fluid Flow--Moving Wall
160(1)
Conclusion
161(1)
Work and the Integrated Form of the Energy Equation
161(3)
Mechanical Work
161(1)
Heat Added
162(1)
The Integrated Energy Equation
163(1)
Flow Work
163(1)
Discussion
163(1)
The Linear Momentum Equation
164(3)
Momentum Equation for a Duct with Both Internal and External Pressure Fields
166(1)
Summary
167(6)
Problems
168(5)
Applications in Constant-Density Flow
173(76)
Introduction
173(1)
A Catalog of Restrictions
174(3)
Incompressible Flow
174(1)
Constant-Density Flow
174(1)
Inviscid Flow
175(1)
Steady Flow
175(1)
Uniform Flow
175(1)
Source-Free Flow
175(1)
Adiabatic Flow
176(1)
Particle-Isentropic Flow
176(1)
Isoenergetic Flow
176(1)
Horizontal Flow
176(1)
Gravitational Field Force
177(1)
The Equations of Incompressible (Constant-Density) Flow
177(3)
Continuity Equation
177(1)
Dynamic Equation
177(1)
First Law of Thermodynamics
178(1)
Energy Equation
178(1)
Linear Momentum Equation
179(1)
Bernoulli's Equation
180(1)
Total Pressure
181(1)
Frictionless Flow out of a Pressurized Reservoir
182(1)
On Quasi-Steady Flow
183(2)
Flow Losses in Internal Inlets
185(2)
Elementary Flow-Metering Devices
187(10)
The Venturi Meter
188(3)
The Plate Orifice
191(5)
A New Approach to Orifice Metering
196(1)
Two Flow Rate Examples
197(3)
Venturi Meter
197(2)
Orifice
199(1)
Pitot and Pitot-Static Tubes
200(3)
Pitot-Static Tube in Nonuniform Flow
202(1)
Elementary Applications of the Momentum Equation
203(11)
Steady Flow of a Liquid through a 90° Pipe Bend
203(1)
Fire Nozzle
204(1)
The Water Rocket
204(2)
Steady Two-Dimensional Jet Impinging upon an Inclined Plate
206(2)
Elementary Theory of a Propeller Treated as an Actuator Disk
208(3)
Overall Efficiency
211(1)
Propulsive Efficiency
211(3)
Flow through a Ducted Fan
214(1)
The Borda--Carnot Relation for a Sudden Enlargement
214(4)
Theory
214(2)
Experiment
216(1)
Application
217(1)
On Flow through a Contraction
217(1)
The Borda Mouthpiece
218(3)
Theory
218(2)
Discussion
220(1)
Forces on Vanes, Power Production
221(4)
Fixed Vane
221(1)
Moving Vane
222(1)
The Moving Vane Considered from an Energy Viewpoint
223(1)
Multivane Devices
224(1)
The Rocket Sled Water Brake
225(8)
Description
225(1)
Quasi-Steady Solution
225(3)
The Unsteady Solution
228(3)
Discussion
231(2)
The Water Sprinkler Problem
233(16)
The Model
233(2)
Theory
235(1)
Calculation of the Rotational Speed
236(1)
Discussion
237(1)
Problems
238(11)
Dimensional Analysis, Dynamic Similitude, and Inspectional Analysis
249(38)
Dimensions vs. Units
249(2)
Basic Dimensions
249(1)
Derived Dimensions
250(1)
The Form of Derived Dimensions
251(1)
Angular Measure
251(1)
Standards in Science and Technology
251(4)
The International Standards
252(2)
The Mechanical, or Engineering, System of Units
254(1)
Complete Physical Equations and Dimensional Homogeneity
255(1)
Complete Physical Equations
255(1)
Dimensional Homogeneity
256(1)
A Primitive Example of Dimensional Analysis
256(2)
The Role of Dimensionless Parameters
258(3)
Example of Flow out of a Reservoir
258(2)
Significance of Dimensionless Parameters for Correlation of Experimental Measurements
260(1)
The Buckingham π-Theorem
261(2)
Application of the π-Theorem
263(3)
Force Coefficient
264(1)
Advance Ratio
265(1)
Geometric Similarity and Model Testing
265(1)
Alternative Method for Determining the π-Ratios
266(3)
Statement of the Problem
266(1)
Interchanging the Roles of the Base and the Repeating Dimensions
267(1)
Identification of the Significant π-Ratios
268(1)
Example Where the Number of π-Ratios is Greater than m -- n
269(1)
Kinematic and Dynamic Similarity
270(2)
Kinematic Similarity
270(1)
Dynamic Similarity
271(1)
On the Physical Significance of the Reynolds Number
272(1)
Inspectional Analysis
272(4)
Application to the Dynamic Equation
273(1)
Discussion
274(2)
Dynamic Similarity and Modeling
276(1)
A Dimensional Analysis and an Inspectional Analysis Compared with the Complete Solution
277(10)
Dimensional Analysis
278(1)
Inspectional Analysis
278(1)
The Complete Solution
278(1)
Application in Transonic Flow
279(1)
Problems
280(7)
Flows in Pipes and Conduits
287(60)
A Historical Note
287(1)
The Experiments of Hagen and Poiseuille on Flow through Capillary Tubes
288(2)
Stokes' Solution for Hage-Poiseuille Flow
290(6)
Newton's Law of Resistance
291(1)
Newton's Second Law Applied to the Cylinder
292(1)
The Velocity Profile
293(1)
Calculation of the Flow Rate
294(1)
The Mean Flow Speed
294(1)
The Skin-Friction Coefficient and the Friction Factor
295(1)
On the Inspectional Analysis of Section 5.12
296(1)
On the Correlation of Theory and Experiment
296(1)
The Darcy-Weisbach Equation for Head Loss in Pipe Flow
297(3)
Definition of Head Loss in Pipe Flow
297(2)
The Darcy-Weisbach Equation
299(1)
Reynolds' Experiments on the Nature of Turbulence and the Discovery of a Criterion for the Transition from Laminar to Turbulent Flow
300(4)
Reynolds' Dimensional Reasoning
300(1)
The Experiments of Reynolds on Transition
301(1)
The Criterion for Transition
302(1)
A Summary of Reynolds' Conclusions
303(1)
The Application of Dimensional Analysis to Pipe Flow
304(8)
On Pipe Roughness
304(1)
Dimensional Analysis of Pipe Flow
305(2)
The Correlation of Equation 6.7-8 for Smooth-Wall Pipes in Turbulent Flow
307(2)
Prandtl's Law for Smooth Pipes
309(1)
Experimental Verification of Prandtl's Law
310(2)
Zagarola and the Superpipe
312(5)
Results
313(4)
Flow in Artificially Roughened Pipes
317(4)
Flow Losses
317(2)
Discussion
319(2)
Flow Losses in Commercial Pipes
321(2)
Moody's Correlation for Commercial Pipes
321(2)
Pumping Power Required to Maintain a Pipe Flow
323(3)
Pumping Power in a Pipe
323(2)
Horsepower Required
325(1)
Power Requirements in Laminar vs. Turbulent Flow
326(1)
Computation of Power Required in a Nonuniform Duct
326(4)
Introduction
326(1)
The Duct Geometry
326(1)
Introduction of the Dynamic Equation
327(1)
Integration of the Viscous Term
328(1)
Flow Loss Coefficient
329(1)
Flow Losses in Other Conduit Elements
330(1)
Hydraulic Calculations for Simple Conduits and Flow Loops
330(4)
Introduction
330(1)
The Equations of Duct Flow
330(2)
Determination of the Individual Loss Terms
332(1)
Conversion of Head Loss to an Equivalent Length Pipe
333(1)
Steady Flow through an Elastic Tube
334(13)
The Pressure-Area Relation
334(2)
The Continuity Equation
336(1)
The Dynamic Equation
336(2)
Application to the Case of Laminar Flow
338(1)
Solution of Equation 6.14-14
338(1)
Velocity and Area Distributions
339(1)
Application
340(1)
Problems
340(7)
Steady Compressible Flow
347(80)
Introductory Remarks
347(1)
Thermodynamics of Fluids
347(6)
First Law
347(1)
Specific Heats
348(1)
Entropy
348(1)
Exactness Criterion
349(1)
Thermally Perfect Gas
349(2)
Calorically Perfect Gas
351(1)
Relations for Perfect Gases
351(1)
Liquids
352(1)
The Equations of Steady, One-Dimensional, Compressible Flow
353(2)
Continuity Equation
353(1)
Dynamic Equation
353(1)
Energy Equation
353(1)
Adiabatic Flow
354(1)
Constant-Area Flow
355(1)
On the Propagation of Disturbances
355(2)
Disturbance Created by Impulsive Motion of a Piston
355(2)
The Speed of Sound
357(2)
On the Maximum Speed of a Fluid Expanding Into a Vacuum
359(1)
Discrepancies between Theory and Experiment
360(5)
Integration of the Dynamic Equation
360(2)
Mass Rate of Flow
362(1)
Theory and Experiment Reconciled
362(1)
The Exit Discharge Speed
363(1)
Flow Geometry at the Exit
364(1)
Total Conditions in a Compressible Flow---Introduction of March Number
365(3)
Total Enthalpy
365(1)
Total Temperature Dependence on Mach Number
366(1)
Total Pressure and Total Density
366(1)
Entropy Changes
367(1)
Application --- Temperature Rise at the Nose of a Reentry Vehicle
368(3)
Problem
368(1)
Solution
368(1)
Discussion
369(2)
Necessary Conditions for Accelerating a Flow in an Ideal Nozzle
371(2)
Pressure Distribution
371(1)
The Area--Mach Number Relation
372(1)
Isentropic Flow through a de Laval Nozzle
373(4)
Area--Mach Number Relations
374(2)
Example
376(1)
The Appearance of Shock Waves in a Convergent-Divergent Nozzle
377(1)
Normal Shock Waves
378(7)
Shock Relations for a General Substance
379(1)
Perfect Gases
380(1)
Conditions Across a Shock as a Function of M1
381(1)
On Compression Shocks and Expansion Shocks
382(3)
On the Structure of Shock Waves
385(9)
The Basic Equations for Flow through a Shock Treated as a Flow Without a Discontinuity
385(1)
Evaluation of the Heat-Conduction and Dissipation Functions in Terms of the Dynamic Flow Variables
386(3)
Integration of Equation 7.14-9
389(3)
A Numerical Example
392(1)
Note on Experimental Studies
393(1)
Analysis of Flow through a de Laval Nozzle with Shock Waves
394(7)
Relation for Second-Throat Area
394(2)
Example
396(1)
Effect of Varying the Dump Tank Exit Pressure
396(1)
Note on the Formation and Stability of Normal Shock Waves
397(2)
On the Momentum Equation for Steady Compressible Flow
399(1)
Application of the Momentum Equation to a Convergent-Divergent Nozzle
400(1)
Fanno Processes
401(7)
Working Equations
401(1)
Mach Number Relations
402(1)
The Influence of Friction
403(1)
The Integrated Equations of Fanno Flow
404(1)
On the Skin-Friction Coefficient
405(1)
Example 1
405(1)
Discussion
406(1)
Example 2
407(1)
Discussion
408(1)
Isothermal Flow
408(4)
Discussion
410(1)
Example
410(2)
The Inflow Problem
412(15)
Application of Energy Balance for an Open System
412(2)
Determination of Tank Pressure
414(1)
Application--Running Time for a Vacuum-Exhaust, Supersonic Wind Tunnel
415(1)
Example
415(1)
Problems
416(11)
Nonsteady Flow
427(66)
Introduction
427(1)
Analysis of Starting Flow in a Pipe Supplied by an Infinite Reservoir
427(3)
Description
427(1)
Analysis
428(2)
Sample Computation
430(1)
Nonsteady Liquid Flow through an Orifice in a Reservoir
430(12)
Introduction
430(1)
The Analytical Model
431(2)
The Governing Differential Equation
433(2)
The Quasi-Steady Solution
435(1)
Discussion
435(2)
Note on Previous Theoretical Work
437(1)
Comparison with Experiment
438(1)
Approximate Theory to Correct for Orifice Effects
439(2)
Approximate Theory for a Reservoir with a Short Nozzle at the Outlet
441(1)
The Draining of a Conical Reservoir
442(14)
The Governing Differential Equation
442(3)
The Quasi-Steady Solution for the Discharge Time
445(1)
The Outer Solution of Equation 8.4-9
446(2)
The Inner Solution
448(1)
Matching the Inner Solution to the Outer Solution
449(2)
The Composite Solution
451(1)
Discussion
452(3)
Comparison with Experiment
455(1)
On the Notion of Characteristics
456(4)
The Differential Equation for a Characteristic Line
458(1)
Differentiating an Arbitrary Function along a Characteristic
459(1)
Theory of Hyperbolic Equations for Functions of Two Independent Variables
460(7)
Introduction
460(1)
Basic Equations
460(1)
The Notion of a Characteristic Direction
461(3)
The Initial Data Line
464(1)
Determination of the Characteristic Parameters
465(2)
Note
467(1)
The General Equations for One-Dimensional, Nonsteady Gas Flow in a Constant-Area Duct
467(6)
The Governing Equations
467(3)
Derivation of Equations Governing the Shape of the Characteristic Lines
470(1)
Equations Governing the Dependent Variables (u, h)
471(1)
The Equations for Nonsteady, Homentropic, Perfect Gas Flow
471(2)
Impulsive Motion of a Piston in a Duct
473(5)
Problem Statement
473(1)
Preliminary Analysis
473(2)
Solution
475(2)
Application
477(1)
Discussion
477(1)
Propagation of an Isentropic Finite-Amplitude Compression Pulse
478(7)
Introduction
478(1)
The Pulse Definition
479(1)
The Wave Diagram for a Pulse
480(1)
Inception Time for Shock Formation
481(1)
Discussion
482(3)
An Approach to Acoustics
485(8)
Introduction
485(2)
Application
487(2)
Wave Energy Transmission
489(1)
Criteria for Sound Propagation in Air
490(1)
Some Flow-Property Magnitudes in Acoustics
491(2)
References 493(8)
Index 501
William B. Brower Jr.