Atjaunināt sīkdatņu piekrišanu

E-grāmata: Principles and Applications of Stereochemistry

(King's College London, UK)
  • Formāts: 262 pages
  • Izdošanas datums: 19-Oct-2017
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351422062
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 102,69 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 262 pages
  • Izdošanas datums: 19-Oct-2017
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351422062
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A thorough understanding of stereochemistry is essential for the comprehension of almost all aspects of modern organic chemistry. It is also of great significance in many biochemical and medicinal disciplines, since the stereoisomers of a compound can have dramatically different biological properties. This text explains how the different properties of stereoisomers of a compound arise, and what processes can be used to prepare and analyze stereoisomerically pure compounds. It also presents prominent coverage of the stereochemistry of inorganic and organometallic compounds, which is likely to increase in importance, as these compounds are used as symmetric catalysts in asymmetric synthesis. Modern stereochemical terminology is used throughout, although reference is also made to older terms which are still widely used. A set of problems at the end of each chapter aims to further the reader's understanding of how the content can be applied. The book is designed mainly as a textbook for undergraduate students and as a reference source for more advanced levels, but is also intended for academic and professional organic chemists.
Foreword ix
Preface xi
1 Molecular structure and bonding
1(22)
1.1 Isomerism
1(1)
1.2 Drawing three dimensional chemical structures
2(5)
1.2.1 Fischer projections
4(2)
1.2.2 Newman projections
6(1)
1.3 VSEPR and the shape of molecules
7(6)
1.4 Structure and bonding
13(2)
1.5 Classification of stereoisomers
15(6)
1.5.1 Enantiomers and diastereomers
15(3)
1.5.2 Conformations and configurations
18(3)
1.6 Further reading
21(1)
1.7 Problems
21(2)
2 Cis-trans isomerism
23(15)
2.1 Cis-trans isomerism in alkenes
23(4)
2.2 Cis-trans isomerism in other systems which contain a double bond
27(1)
2.3 Cis-trans isomerism in cyclic systems
28(1)
2.4 Cis-trans isomerism in square planar and octahedral metal complexes
29(1)
2.5 Cis-trans isomerism about single bonds (conformational diastereomers)
30(1)
2.6 Methods for distinguishing cis-trans isomers
31(3)
2.6.1 NMR spectroscopy
31(2)
2.6.2 X-ray crystallography
33(1)
2.6.3 Dipole moments
34(1)
2.7 Further reading
34(1)
2.8 Problems
35(3)
3 Enantiomers
38(37)
3.1 Structure of enantiomers
38(1)
3.2 Nomenclature for enantiomers (specification of absolute configuration)
39(4)
3.2.1 The d/l-nomenclature system
39(1)
3.2.2 The RIS nomenclature system
40(3)
3.3 Chemical properties of enantiomers
43(2)
3.4 Physical properties of enantiomers
45(5)
3.4.1 Optical rotation
46(3)
3.4.2 Other chiroptical methods (optical rotary dispersion and circular dichroism)
49(1)
3.5 Enantiomeric excess
50(2)
3.6 Biological properties of enantiomers
52(4)
3.6.1 Origin of enantiomerically pure compounds in nature
54(2)
3.7 Chirality due to stereocentres at atoms other than carbon
56(6)
3.7.1 Sulphur
56(2)
3.7.2 Phosphorus
58(1)
3.7.3 Nitrogen
58(1)
3.7.4 Metal complexes
59(3)
3.8 Other stereogenic elements which can produce molecular chirality
62(7)
3.8.1 Stereogenic axis
63(4)
3.8.2 Stereoplane
67(1)
3.8.3 Helical molecules
68(1)
3.9 Further reading
69(3)
3.10 Problems
72(3)
4 Compounds with two or more stereocentres
75(16)
4.1 Compounds with two stereocentres
75(2)
4.2 Compounds with more than two stereocentres
77(2)
4.3 Polymer stereochemistry
79(5)
4.3.1 Stereochemical consequences of backbone stereocentres
80(3)
4.3.2 Helical polymers
83(1)
4.4 Relative stereochemistry nomenclature
84(2)
4.5 Diastereomeric excess
86(1)
4.6 Further reading
87(1)
4.7 Problems
87(4)
5 Interconversion and analysis of stereoisomers
91(34)
5.1 Racemization
91(1)
5.1.1 Thermal racemization
91(1)
5.1.2 Base induced racemization
91(1)
5.1.3 Acid induced racemization
92(1)
5.2 Epimerization
92(3)
5.3 Resolution
95(12)
5.3.1 Resolution by crystallization
95(4)
5.3.2 Resolution by formation of diastereomers
99(3)
5.3.3 Kinetic resolution
102(4)
5.3.4 Resolution by preferential absorption
106(1)
5.4 Methods for determining enantiomeric excess
107(10)
5.4.1 Chromatography using a chiral stationary phase
107(3)
5.4.2 NMR
110(2)
5.4.3 Conversion to diastereomers
112(3)
5.4.4 Polarimetry
115(2)
5.5 Determination of absolute configuration
117(2)
5.5.1 Chiroptical methods
117(1)
5.5.2 X-ray crystallography
118(1)
5.5.3 Conversion to a compound of known absolute configuration
118(1)
5.6 Determination of relative configuration
119(1)
5.7 Further reading
120(1)
5.8 Problems
121(4)
6 Molecular symmetry
125(17)
6.1 Introduction
125(1)
6.2 Symmetry elements and symmetry operations
126(7)
6.2.1 Proper axes (Cn) and proper rotations (Ckn)
126(2)
6.2.2 The identity element (E) and the identical operation (E)
128(1)
6.2.3 Plane of symmetry (σ) and reflection operations (σ)
128(1)
6.2.4 Centre of inversion (i) and the inverse operation (i)
129(1)
6.2.5 Improper axes (Sn) and improper rotations (Skn)
130(3)
6.3 Symmetry of molecules with multiple conformations
133(1)
6.4 Point groups
134(3)
6.5 Symmetry and chirality
137(2)
6.6 Further reading
139(1)
6.7 Problems
139(3)
7 Topism and prostereogenicity
142(15)
7.1 Homotopic, enantiotopic and diastereotopic groups
142(5)
7.2 Homotopic, enantiotopic and diastereotopic faces
147(2)
7.3 Physical and chemical properties of heterotopic groups and faces
149(2)
7.3.1 The NMR spectra of compounds which contain diastereotopic groups
149(2)
7.4 Nomenclature for heterotopic groups and faces
151(2)
7.5 Further reading
153(1)
7.6 Problems
153(4)
8 Conformations of acyclic and cyclic molecules
157(40)
8.1 Introduction
157(1)
8.2 Conformations of acyclic molecules
157(4)
8.3 Conformations of cyclic alkanes and their derivatives
161(2)
8.4 Cyclopropane
163(2)
8.4.1 Isomerism in cyclopropane derivatives
165(1)
8.5 Cyclobutane
165(2)
8.6 Cyclopentane
167(1)
8.7 Cyclohexane
167(13)
8.7.1 The chair conformation
168(6)
8.7.2 The boat conformation
174(1)
8.7.3 The twist boat conformation
174(1)
8.7.4 Interconversion of cyclohexane conformations
175(1)
8.7.5 Electronic effects in the conformational analysis of cyclohexane derivatives
176(2)
8.7.6 Fused six-membered rings
178(2)
8.8 Medium and large rings
180(1)
8.9 Conformations of inorganic and organometallic compounds
180(1)
8.10 Conformations of biopolymers
181(6)
8.10.1 Proteins
182(1)
8.10.2 Polysaccharides
183(2)
8.10.3 Nucleic acids
185(2)
8.11 Methods for determining molecular conformation
187(6)
8.11.1 X-ray crystallography
187(1)
8.11.2 NMR spectroscopy
188(2)
8.11.3 Computer assisted confromational analysis
190(3)
8.12 Further reading
193(1)
8.13 Problems
194(3)
9 Stereochemistry of chemical reactions
197(32)
9.1 Introduction
197(1)
9.2 Substitution reactions
197(5)
9.2.1 SN2 reactions
198(2)
9.2.2 SN1 reactions
200(2)
9.2.3 Substitution with neighbouring group participation
202(1)
9.3 Elimination reactions
202(5)
9.3.1 E2 eliminations
203(3)
9.3.2 El eliminations
206(1)
9.3.3 Syn-eliminations
206(1)
9.4 Addition reactions to alkenes
207(3)
9.5 Addition of nucleophiles to aldehydes and ketones
210(8)
9.5.1 Chelation control
212(1)
9.5.2 The Felkin-Anh model
213(1)
9.5.3 The aldol reaction
214(1)
9.5.4 The Wittig reaction
215(3)
9.6 Pericyclic reactions
218(6)
9.6.1 Diels-Alder reactions: [ An + In] cycloadditions
218(4)
9.6.2 1,3-dipolar cycloadditions
222(1)
9.6.3 [ 2n + 2n] cycloaddition reactions
222(1)
9.6.4 Cheletropic reactions
223(1)
9.7 Further reading
224(1)
9.8 Problems
225(4)
10 Asymmetric synthesis
229(17)
10.1 Introduction
229(2)
10.2 Use of chiral auxiliaries
231(3)
10.3 Use of enantiomerically pure reagents
234(8)
10.3.1 Use of stoichiometric reagents
234(3)
10.3.2 Use of enantiomerically pure catalysts
237(3)
10.3.3 Use of enzymes
240(2)
10.4 Further reading
242(1)
10.5 Problems
243(3)
Index 246
North, Michael