Atjaunināt sīkdatņu piekrišanu

E-grāmata: Principles of Biomedical Instrumentation

Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 89,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An up-to-date undergraduate text integrating microfabrication techniques, sensors and digital signal processing with clinical applications.

This accessible yet in-depth textbook describes the step-by-step processes involved in biomedical device design. Integrating microfabrication techniques, sensors and digital signal processing with key clinical applications, it covers: the measurement, amplification and digitization of physiological signals, and the removal of interfering signals; the transmission of signals from implanted sensors through the body, and the issues surrounding the powering of these sensors; networks for transferring sensitive patient data to hospitals for continuous home-monitoring systems; tests for ensuring patient safety; the cost-benefit and technological trade-offs involved in device design; and current challenges in biomedical device design. With dedicated chapters on electrocardiography, digital hearing aids and mobile health, and including numerous end-of-chapter homework problems, online solutions and additional references for extended learning, it is the ideal resource for senior undergraduate students taking courses in biomedical instrumentation and clinical technology.

Papildus informācija

An up-to-date undergraduate text integrating microfabrication techniques, sensors and digital signal processing with clinical applications.
Preface xi
List of Abbreviations
xvi
1 Biomedical Instrumentation and Devices
1(17)
1.1 Classification of Biomedical Instruments and Devices
1(2)
1.2 Outline of the Design Process: From Concept to Clinical Device
3(5)
1.2.1 Engineering Design
4(4)
1.3 Regulation of Biomedical Instrumentation and Devices
8(2)
1.4 Safety of Biomedical Instrumentation and Devices
10(4)
1.4.1 ISO and IEC Standards
10(4)
1.4.2 Biological Testing
14(1)
1.5 Evaluation of a New Device
14(4)
2 Sensors and Transducers
18(44)
2.1 Micro-Electro-Mechanical Systems
19(5)
2.1.1 Noise in MEMS Devices
22(2)
2.2 Voltage Sensors: Example -- Biopotential Electrodes
24(7)
2.2.1 Clinical and Biomedical Voltage Measurements
24(1)
2.2.2 Action Potentials and Cellular Depolarization
24(4)
2.2.3 Surface Electrode Design
28(3)
2.3 Optical Sensors: Example -- a Pulse Oximeter
31(6)
2.3.1 Clinical Blood Oxygenation Measurements
31(2)
2.3.2 Measurement Principle Using an Optical Sensor
33(2)
2.3.3 Optical Transmitter and Detector Design
35(2)
2.4 Displacement/Pressure Sensors and Accelerometers
37(12)
2.4.1 Clinical Pathologies Producing Changes in Internal Pressure
38(1)
2.4.2 Resistive and Piezoresistive Transducers
38(4)
2.4.3 Piezoelectric Sensors
42(3)
2.4.4 Capacitive Transducers
45(3)
2.4.5 Inductive Transducers: the Linear Voltage Differential Transformer
48(1)
2.5 Chemical Sensors: Example -- a Glucose Monitor
49(4)
2.5.1 Clinical Need for Glucose Monitoring
49(1)
2.5.2 System Requirements for Glucose Monitoring
49(1)
2.5.3 Basic Detection Principles of Glucose Monitoring
50(2)
2.5.4 Designing a Portable Device for Glucose Monitoring
52(1)
2.6 Acoustic Sensors: Example -- a Microphone for Hearing Aids
53(9)
2.6.1 Clinical Need for Hearing Aids
53(1)
2.6.2 Microphone Design for Hearing Aids
54(8)
3 Signal Filtering and Amplification
62(44)
3.1 Frequency-Dependent Circuit Characteristics: Bode Plots
63(8)
3.2 Passive Filter Design
71(8)
3.2.1 First-Order Low-Pass and High-Pass Filters
72(1)
3.2.2 Higher Order High-Pass, Low-Pass, Band-Pass and Band-Stop Filters
73(4)
3.2.3 Resonant Circuits as Filters
77(2)
3.3 Operational Amplifiers
79(10)
3.3.1 Circuit Analysis Rules for Op-Amps
80(1)
3.3.2 Single Op-Amp Configurations
80(7)
3.3.3 The Instrumentation Amplifier
87(2)
3.4 Active Filters
89(6)
3.4.1 First-Order Low-Pass, High-Pass and Band-Pass Active Filters
89(3)
3.4.2 Higher Order Butterworth, Chebyshev and Sallen-Key Active Filters
92(3)
3.5 Noise in Electrical Circuits
95(2)
3.6 Examples of Signal Amplification and Filtering
97(9)
3.6.1 Signal Conditioning in the Pulse Oximeter
98(2)
3.6.2 Amplification and Filtering in a Glucose Sensor
100(6)
4 Data Acquisition and Signal Processing
106(34)
4.1 Sampling Theory and Signal Aliasing
108(1)
4.2 Dynamic Range, Quantization Noise, Differential and Integrated Non-Linearity
108(4)
4.3 Electronic Building Blocks of Analogue-to-Digital Converters
112(5)
4.3.1 Sample-and-Hold Circuits
113(2)
4.3.2 Comparator Circuits
115(1)
4.3.3 Shift Register Circuits
116(1)
4.4 Analogue-to-Digital Converter Architectures
117(10)
4.4.1 Flash ADCs
118(1)
4.4.2 Successive Approximation Register ADCs
119(2)
4.4.3 Pipelined ADCs
121(1)
4.4.4 Oversampling ADCs
122(5)
4.5 Commercial ADC Specifications
127(1)
4.5.1 ADC for a Pulse Oximeter
127(1)
4.5.2 ADC for a Glucose Meter
128(1)
4.6 Characteristics of Biomedical Signals and Post-Acquisition Signal Processing
128(12)
4.6.1 Deterministic and Stochastic Signals
128(3)
4.6.2 The Fourier Transform
131(2)
4.6.3 Cross-Correlation
133(2)
4.6.4 Methods of Dealing with Low Signal-to-Noise Data
135(5)
5 Electrocardiography
140(29)
5.1 Electrical Activity in the Heart
141(4)
5.2 Electrode Design and Einthoven's Triangle
145(4)
5.2.1 Standard Twelve-Lead Configuration
146(3)
5.3 ECG System Design
149(7)
5.3.1 Common-Mode Signals and Other Noise Sources
150(2)
5.3.2 Reducing the Common-Mode Signal
152(2)
5.3.3 Design of Lead-Off Circuitry
154(1)
5.3.4 Filtering and Sampling
155(1)
5.4 Signal Processing of the ECG Signal and Automatic Clinical Diagnosis
156(2)
5.4.1 University of Glasgow (Formerly Glasgow Royal Infirmary) Algorithm
157(1)
5.5 Examples of Abnormal ECG Recordings and Clinical Interpretation
158(3)
5.6 ECG Acquisition During Exercise: Detection of Myocardial Ischaemia
161(2)
5.7 High-Frequency (HF) ECG Analysis
163(6)
6 Electroencephalography
169(27)
6.1 Electrical Signals Generated in the Brain
171(4)
6.1.1 Postsynaptic Potentials
171(2)
6.1.2 Volume Conduction Through the Brain
173(2)
6.2 EEG System Design
175(5)
6.2.1 Electrodes and their Placement on the Scalp
176(2)
6.2.2 Amplifiers/Filters and Digitizing Circuitry
178(2)
6.3 Features of a Normal EEG: Delta, Theta, Alpha and Beta Waves
180(2)
6.4 Clinical Applications of EEG
182(5)
6.4.1 EEG in Epilepsy
182(1)
6.4.2 Role of EEG in Anaesthesia: the Bispectral Index
183(4)
6.5 EEG Signals in Brain--Computer Interfaces for Physically Challenged Patients
187(4)
6.5.1 Applications of BCIs to Communication Devices
188(2)
6.5.2 Applications of BCIs in Functional Electrical Stimulation and Neuroprostheses
190(1)
6.6 Source Localization in EEG Measurements (Electrical Source Imaging)
191(5)
7 Digital Hearing Aids
196(39)
7.1 The Human Auditory System
198(3)
7.2 Causes of Hearing Loss
201(1)
7.3 Basic Design of a Digital Hearing Aid
202(1)
7.4 Different Styles of Hearing Aid
202(1)
7.5 Components of a Hearing Aid
203(10)
7.5.1 Earmoulds and Vents
204(3)
7.5.2 Microphones
207(6)
7.6 Digital Signal Processing
213(12)
7.6.1 Feedback Reduction
216(1)
7.6.2 Adaptive Directionality and Noise Reduction
216(2)
7.6.3 Wind-Noise Reduction
218(2)
7.6.4 Multi-Channel and Impulsive Noise-Reduction Algorithms
220(1)
7.6.5 Compression
220(4)
7.6.6 Multi-Channel Compression: BILL and TILL
224(1)
7.6.7 Frequency Lowering
224(1)
7.7 Digital-to-Analogue Conversion and the Receiver
225(2)
7.8 Power Requirements and Hearing Aid Batteries
227(1)
7.9 Wireless Hearing Aid Connections
227(2)
7.10 Binaural Hearing Aids
229(2)
7.11 Hearing Aid Characterization Using KEMAR
231(4)
8 Mobile Health, Wearable Health Technology and Wireless Implanted Devices
235(36)
8.1 Mobile and Electronic Health: Mobile Phones and Smartphone Apps
238(1)
8.2 Wearable Health Monitors
239(4)
8.2.1 Technology for Wearable Sensors
240(3)
8.3 Design Considerations for Wireless Implanted Devices
243(7)
8.3.1 Data Transmission Through the Body
243(7)
8.4 Examples of Wireless Implanted Devices
250(15)
8.4.1 Cardiovascular Implantable Electronic Devices
250(11)
8.4.2 Continuous Glucose Monitors
261(3)
8.4.3 Implanted Pressure Sensors for Glaucoma
264(1)
8.5 Packaging for Implanted Devices
265(6)
Appendix: Reference Standards and Information Related to Wireless Implant Technology
266(5)
9 Safety of Biomedical Instruments and Devices
271(33)
9.1 Physiological Effects of Current Flow Through the Human Body
274(3)
9.2 The Hospital Electrical Supply
277(3)
9.2.1 Hospital-Grade Receptacles
279(1)
9.3 Macroshock, Microshock and Leakage Currents: Causes and Prevention
280(5)
9.3.1 Macroshock
280(1)
9.3.2 Protection Against Macroshock
280(4)
9.3.3 Microshock
284(1)
9.3.4 Protection Against Microshock
284(1)
9.4 Classification of Medical Devices
285(3)
9.4.1 Classes of Equipment
286(1)
9.4.2 Types of Equipment
287(1)
9.5 Safety Testing Equipment
288(5)
9.5.1 Leakage Current Measurements
289(3)
9.5.2 Earthbond Testing
292(1)
9.6 Safety of Implanted Devices
293(9)
9.6.1 Biocompatibility
293(7)
9.6.2 Electromagnetic Safety
300(1)
9.6.3 Clinical Studies
301(1)
9.7 Design of Devices That Can Be Used in a Magnetic Resonance Imaging Scanner
302(2)
Appendix: Safety Policy Documents 304(4)
Glossary 308(12)
Index 320
Andrew G. Webb is Professor and Director of the C. J. Gorter Center for High Field Magnetic Resonance Imaging at the Leiden University Medical Center. He has authored or co-authored several books, including Introduction to Medical Imaging (Cambridge, 2010) and Introduction to Biomedical Imaging (2002).