Atjaunināt sīkdatņu piekrišanu

E-grāmata: Principles of Broadband Switching and Networking

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 120,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamental principles are relevant to other communication networks with regular topologies.

After explaining the concept of the modern broadband integrated services network and why it is necessary in todays society, the book moves on to basic switch design principles, discussing two types of circuit switch designspace domain and time domainand packet switch design. Throughput improvements are illustrated by some switch design variations such as Speedup principle, Channel-Grouping principle, Knockout principle, and Dilation principle.

Moving seamlessly into advanced switch design principles, the book covers switch scalability, switch design for multicasting, and path switching. Then the focus moves to broadband communications networks that make use of such switches. Readers receive a detailed introduction on how to allocate network resources and control traffic to satisfy the quality of service requirements of network users and to maximize network usage. As an epilogue, the text shows how transmission noise and packet contention have similar characteristics and can be tamed by comparable means to achieve reliable communication.

Principles of Broadband Switching and Networking is written for senior undergraduate and first-year postgraduate students with a solid background in probability theory.
Preface xiii
About the Authors xvii
1 introduction and Overview 1
1.1 Switching and Transmission
2
1.1.1 Roles of Switching and Transmission
2
1.1.2 Telephone Network Switching and Transmission Hierarchy
4
1.2 Multiplexing and Concentration
5
1.3 Timescales of Information Transfer
8
1.3.1 Sessions and Circuits
9
1.3.2 Messages
9
1.3.3 Packets and Cells
9
1.4 Broadband Integrated Services Network
10
Problems
12
2 Circuit Switch Design Principles 15
2.1 Space-Domain Circuit Switching
16
2.1.1 Nonblocking Properties
16
2.1.2 Complexity of Nonblocking Switches
18
2.1.3 Clos Switching Network
20
2.1.4 Benes Switching Network
28
2.1.5 Baseline and Reverse Baseline Networks
31
2.1.6 Cantor Switching Network
32
2.2 Time-Domain and Time-Space-Time Circuit Switching
35
2.2.1 Time-Domain Switching
35
2.2.2 lime-Space-Tune Switching
37
Problems
39
3 Fundamental Principles of Packet Switch Design 43
3.1 Packet Contention in Switches
45
3.2 Fundamental Properties of Interconnection Networks
48
3.2.1 Definition of Banyan Networks
49
3.2.2 Simple Switches Based on Banyan Networks
51
3.2.3 Combinatoric Properties of Banyan Networks
54
3.2.4 Nonblocking Conditions for the Banyan Network
54
3.3 Sorting Networks
59
3.3.1 Basic Concepts of Comparison Networks
61
3.3.2 Sorting Networks Based on Bitonic Sort
64
3.3.3 The Odd—Even Sorting Network
70
3.3.4 Switching and Contention Resolution in Sort-Banyan Network
71
3.4 Nonblocking and Self-Routing Properties of Clos Networks
75
3.4.1 Nonblocking Route Assignment
76
3.4.2 Recursiveness Property
79
3.4.3 Basic Properties of Half-Clos Networks
81
3.4.4 Sort-Clos Principle
89
Problems
90
4 Switch Performance Analysis and Design improvements 95
4.1 Performance of Simple Switch Designs
95
4.1.1 Throughput of an Internally Nonblocking Loss System
96
4.1.2 Throughput of an Input-Buffered Switch
96
4.1.3 Delay of an Input-Buffered Switch
103
4.1.4 Delay of an Output-Buffered Switch
112
4.2 Design Improvements for Input Queueing Switches
113
4.2.1 Look-Ahead Contention Resolution
113
4.2.2 Parallel Iterative Matching
115
4.3 Design Improvements Based on Output Capacity Expansion
119
4.3.1 Speedup Principle
119
4.3.2 Channel-Grouping Principle
121
4.3.3 Knockout Principle
131
4.3.4 Replication Principle
137
4.3.5 Dilation Principle
138
Problems
144
5 Advanced Switch Design Principles 151
5.1 Switch Design Principles Based on Deflection Routing
151
5.1.1 Tandem-Banyan Network
151
5.1.2 Shuffle-Exchange Network
154
5.1.3 Feedback Shuffle-Exchange Network
158
5.1.4 Feedback Bidirectional Shuffle-Exchange Network
166
5.1.5 Dual Shuffle-Exchange Network
175
5.2 Switching by Memory I/O
184
5.3 Design Principles for Scalable Switches
187
5.3.1 Generalized Knockout Principle
187
5.3.2 Modular Architecture
191
Problems
198
6 Switching Principles for Multicast, Multirate, and Multimedia Services 205
6.1 Multicast Switching
205
6.1.1 Multicasting Based on Nonblocking Copy Networks
208
6.1.2 Performance Improvement of Copy Networks
213
6.1.3 Multicasting Algorithm for Arbitrary Network Topologies
220
6.1.4 Nonblocking Copy Networks Based on Broadcast Clos Networks
228
6.2 Path Switching
235
6.2.1 Basic Concept of Path Switching
237
6.2.2 Capacity and Route Assignments for Multirate Traffic
242
6.2.3 Trade-Off Between Performance and Complexity
249
6.2.4 Multicasting in Path Switching
254
6.A Appendix
268
6.A.1 A Formulation of Effective Bandwidth
268
6.A.2 Approximations of Effective Bandwidth Based on On–Off Source Model
269
Problems
270
7 Basic Concepts of Broadband Communication Networks 275
7.1 Synchronous Transfer Mode
275
7.2 Delays in ATM Network
280
7.3 Cell Size Consideration
283
7.4 Cell Networking, Virtual Channels, and Virtual Paths
285
7.4.1 No Data Link Layer
285
7.4.2 Cell Sequence Preservation
286
7.4.3 Virtual-Circuit Hop-by-Hop Routing
286
7.4.4 Virtual Channels and Virtual Paths
287
7.4.5 Routing Using VCI and VPI
289
7.4.6 Motivations for VP/VC Two-Tier Hierarchy
293
7.5 ATM Layer, Adaptation Layer, and Service Class
295
7.6 Transmission Interface
300
7.7 Approaches Toward IP over ATM
300
7.7.1 Classical IP over ATM
301
7.7.2 Next Hop Resolution Protocol
302
7.7.3 IP Switch and Cell Switch Router
303
7.7.4 ARIS and Tag Switching
306
7.7.5 Multiprotocol Label Switching
308
Appendix 7.A ATM Cell Format
311
7.A.1 ATM Layer
311
7.A.2 Adaptation Layer
314
Problems
319
8 Network Traffic Control and Bandwidth Allocation 323
8.1 Fluid-Flow Model: Deterministic Discussion
326
8.2 Fluid-Flow On–Off Source Model: Stochastic Treatment
332
8.3 Traffic Shaping and Policing
348
8.4 Open-Loop Flow Control and Scheduling
354
8.4.1 First-Come-First-Serve Scheduling
355
8.4.2 Fixed-Capacity Assignment
357
8.4.3 Round-Robin Scheduling
358
8.4.4 Weighted Fair Queueing
364
8.4.5 Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control
373
8.5 Closed-Loop Flow Control
380
Problems
381
9 Packet Switching and Information Transmission 385
9.1 Duality of Switching and Transmission
386
9.2 Parallel Characteristics of Contention and Noise
390
9.2.1 Pseudo Signal-to-Noise Ratio of Packet Switch
390
9.2.2 Clos Network with Random Routing as a Noisy Channel
393
9.3 Clos Network with Deflection Routing
396
9.3.1 Cascaded Clos Network
397
9.3.2 Analysis of Deflection Clos Network
397
9.4 Route Assignments and Error-Correcting Codes
402
9.4.1 Complete Matching in Bipartite Graphs
402
9.4.2 Graphical Codes
405
9.4.3 Route Assignments of Benes Network
407
9.5 Clos Network as Noiseless Channel-Path Switching
410
9.5.1 Capacity Allocation
411
9.5.2 Capacity Matrix Decomposition
414
9.6 Scheduling and Source Coding
416
9.6.1 Smoothness of Scheduling
417
9.6.2 Comparison of Scheduling Algorithms
420
9.6.3 Two-Dimensional Scheduling
424
9.7 Conclusion
430
Bibliography 433
TONY T. LEE, PhD, is Professor of Information Engineering at the Chinese University of Hong Kong and an Adjunct Professor at the Institute of Applied Mathematics of the Chinese Academy of Science. From 1991 to 1993, he was a professor of electrical engineering at the Polytechnic Institute. Previously with AT&T Bell and Bellcore, Dr. Lee was the recipient of the Leonard G. Abraham Prize Paper Award from IEEE Communication Society in 1988, and the National Natural Science Award from China in 1999. He is a Fellow of IEEE and now an associate editor of the IEEE Transactions on Communications. SOUNG C. LIEW, PhD, is Professor and Chairman of the Department of Information Engineering at the Chinese University of Hong Kong. He is also Adjunct Professor at Southeast University in China. TCP Veno, a version of TCP that improves its performance over wireless networks, was proposed by Liew and his student, and has now been incorporated into a recent release of Linux OS. He initiated and built the first inter-university ATM network testbed in Hong Kong in 1993.