Atjaunināt sīkdatņu piekrišanu

E-grāmata: Principles of Physics: For Scientists and Engineers

  • Formāts: EPUB+DRM
  • Sērija : Undergraduate Lecture Notes in Physics
  • Izdošanas datums: 02-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642230264
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Undergraduate Lecture Notes in Physics
  • Izdošanas datums: 02-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642230264
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook presents a basic course in physics to teach mechanics, mechanical properties of matter, thermal properties of matter, elementary thermodynamics, electrodynamics, electricity, magnetism, light and optics and sound. It includes simple mathematical approaches to each physical principle, and all examples and exercises are selected carefully to reinforce each chapter. In addition, answers to all exercises are included that should ultimately help solidify the concepts in the minds of the students and increase their confidence in the subject. Many boxed features are used to separate the examples from the text and to highlight some important physical outcomes and rules. The appendices are chosen in such a way that all basic simple conversion factors, basic rules and formulas, basic rules of differentiation and integration can be viewed quickly, helping student to understand the elementary mathematical steps used for solving the examples and exercises.

Instructors teaching form this textbook will be able to gain online access to the solutions manual which provides step-by-step solutions to all exercises contained in the book. The solutions manual also contains many tips, coloured illustrations, and explanations on how the solutions were derived.

Recenzijas

From the book reviews:

The book follows the basic organization of an introductory physics course and covers all of the topics with sufficient depth . The book contains all the essentials, showing different applications for varied laws of physics and introducing the working principles of some of the instruments that students might work with in a physics lab. a textbook to read before a lecture on a specific topic, as the student can familiarize himself with the definitions and mathematics used. (Kadri Tinn, AstroMadness.com, August, 2014)

I recommend this book to people who need easy and direct access to a wide spectrum of physics theories to apply practically in their professional life. This is a very well written text book. I love the colorful diagrams and illustrations. I would highly recommend this book for any respectful universities and colleges. Students would invest once in this book and use it in multiple courses. (Philosophy, Religion and Science Book Reviews, bookinspections.wordpress.com, March, 2014)

Part I Fundamental Basics
1 Dimensions and Units
3(14)
1.1 The International System of Units
3(2)
1.2 Standards of Length, Time, and Mass
5(4)
1.3 Dimensional Analysis
9(3)
1.4 Exercises
12(5)
2 Vectors
17(24)
2.1 Vectors and Scalars
17(2)
2.2 Properties of Vectors
19(3)
2.3 Vector Components and Unit Vectors
22(5)
2.4 Multiplying Vectors
27(6)
2.5 Exercises
33(8)
Part II Mechanics
3 Motion in One Dimension
41(30)
3.1 Position and Displacement
41(1)
3.2 Average Velocity and Average Speed
42(2)
3.3 Instantaneous Velocity and Speed
44(4)
3.4 Acceleration
48(4)
3.5 Constant Acceleration
52(5)
3.6 Free Fall
57(5)
3.7 Exercises
62(9)
4 Motion in Two Dimensions
71(32)
4.1 Position, Displacement, Velocity, and Acceleration Vectors
71(8)
4.2 Projectile Motion
79(8)
4.3 Uniform Circular Motion
87(3)
4.4 Tangential and Radial Acceleration
90(1)
4.5 Non-uniform Circular Motion
91(2)
4.6 Exercises
93(10)
5 Force and Motion
103(34)
5.1 The Cause of Acceleration and Newton's Laws
103(3)
5.2 Some Particular Forces
106(7)
5.3 Applications to Newton's Laws
113(11)
5.4 Exercises
124(13)
6 Work, Energy, and Power
137(44)
6.1 Work Done by a Constant Force
137(5)
6.2 Work Done by a Variable Force
142(6)
6.3 Work-Energy Theorem
148(3)
6.4 Conservative Forces and Potential Energy
151(6)
6.5 Conservation of Mechanical Energy
157(2)
6.6 Work Done by Non-conservative Forces
159(3)
6.7 Conservation of Energy
162(4)
6.8 Power
166(4)
6.9 Exercises
170(11)
7 Linear Momentum, Collisions, and Center of Mass
181(46)
7.1 Linear Momentum and Impulse
181(3)
7.2 Conservation of Linear Momentum
184(3)
7.3 Conservation of Momentum and Energy in Collisions
187(8)
7.3.1 Elastic Collisions in One and Two Dimensions
187(7)
7.3.2 Inelastic Collisions
194(1)
7.4 Center of Mass (CM)
195(4)
7.5 Dynamics of the Center of Mass
199(4)
7.6 Systems of Variable Mass
203(6)
7.6.1 Systems of Increasing Mass
204(1)
7.6.2 Systems of Decreasing Mass; Rocket Propulsion
205(4)
7.7 Exercises
209(18)
8 Rotational Motion
227(42)
8.1 Radian Measures
227(1)
8.2 Rotational Kinematics; Angular Quantities
228(4)
8.3 Constant Angular Acceleration
232(1)
8.4 Angular Vectors
233(1)
8.5 Relating Angular and Linear Quantities
233(5)
8.6 Rotational Dynamics; Torque
238(2)
8.7 Newton's Second Law for Rotation
240(8)
8.8 Kinetic Energy, Work, and Power in Rotation
248(4)
8.9 Rolling Motion
252(7)
8.10 Exercises
259(10)
9 Angular Momentum
269(34)
9.1 Angular Momentum of Rotating Systems
269(8)
9.1.1 Angular Momentum of a Particle
269(2)
9.1.2 Angular Momentum of a System of Particles
271(1)
9.1.3 Angular Momentum of a Rotating Rigid Body
271(6)
9.2 Conservation of Angular Momentum
277(8)
9.3 The Spinning Top and Gyroscope
285(4)
9.4 Exercises
289(14)
10 Mechanical Properties of Matter
303(54)
10.1 Density and Relative Density
304(2)
10.2 Elastic Properties of Solids
306(8)
10.2.1 Young's Modulus: Elasticity in Length
307(3)
10.2.2 Shear Modulus: Elasticity of Shape
310(2)
10.2.3 Bulk Modulus: Volume Elasticity
312(2)
10.3 Fluids
314(2)
10.4 Fluid Statics
316(12)
10.5 Fluid Dynamics
328(17)
10.6 Exercises
345(12)
Part III Introductory Thermodynamics
11 Thermal Properties of Matter
357(22)
11.1 Temperature
357(3)
11.2 Thermal Expansion of Solids and Liquids
360(5)
11.2.1 Linear Expansion
361(1)
11.2.2 Volume Expansion
362(3)
11.3 The Ideal Gas
365(6)
11.4 Exercises
371(8)
12 Heat and the First Law of Thermodynamics
379(48)
12.1 Heat and Thermal Energy
379(11)
12.1.1 Units of Heat, The Mechanical Equivalent of Heat
379(1)
12.1.2 Heat Capacity and Specific Heat
380(4)
12.1.3 Latent Heat
384(6)
12.2 Heat and Work
390(5)
12.3 The First Law of Thermodynamics
395(1)
12.4 Applications of the First Law of Thermodynamics
396(10)
12.5 Heat Transfer
406(10)
12.6 Exercises
416(11)
13 Kinetic Theory of Gases
427(24)
13.1 Microscopic Model of an Ideal Gas
427(7)
13.2 Molar Specific Heat Capacity of an Ideal Gas
434(7)
13.2.1 Molar Specific Heat at Constant Volume
435(1)
13.2.2 Molar Specific Heat at Constant Pressure
436(5)
13.3 Distribution of Molecular Speeds
441(1)
13.4 Non-ideal Gases and Phases of Matter
442(2)
13.5 Exercises
444(7)
Part IV Sound and Light Waves
14 Oscillations and Wave Motion
451(48)
14.1 Simple Harmonic Motion
451(11)
14.1.1 Velocity and Acceleration of SHM
452(3)
14.1.2 The Force Law for SHM
455(4)
14.1.3 Energy of the Simple Harmonic Oscillator
459(3)
14.2 Damped Simple Harmonic Motion
462(1)
14.3 Sinusoidal Waves
463(7)
14.3.1 Transverse and Longitudinal Waves
463(2)
14.3.2 Wavelength and Frequency
465(1)
14.3.3 Harmonic Waves: Simple Harmonic Motion
466(4)
14.4 The Speed of Waves on Strings
470(2)
14.5 Energy Transfer by Sinusoidal Waves on Strings
472(4)
14.6 The Linear Wave Equation
476(1)
14.7 Standing Waves
477(9)
14.7.1 Reflection at a Boundary
481(1)
14.7.2 Standing Waves and Resonance
482(4)
14.8 Exercises
486(13)
15 Sound Waves
499(32)
15.1 Speed of Sound Waves
499(3)
15.2 Periodic Sound Waves
502(3)
15.3 Energy, Power, and Intensity of Sound Waves
505(5)
15.4 The Decibel Scale
510(4)
15.5 Hearing Response to Intensity and Frequency
514(1)
15.6 The Doppler Effect
514(7)
15.7 Supersonic Speeds and Shock Waves
521(2)
15.8 Exercises
523(8)
16 Superposition of Sound Waves
531(30)
16.1 Superposition and Interference
531(2)
16.2 Spatial Interference of Sound Waves
533(4)
16.3 Standing Sound Waves
537(4)
16.4 Standing Sound Waves in Air Columns
541(8)
16.5 Temporal Interference of Sound Waves: Beats
549(5)
16.6 Exercises
554(7)
17 Light Waves and Optics
561(42)
17.1 Light Rays
561(2)
17.2 Reflection and Refraction of Light
563(5)
17.3 Total Internal Reflection and Optical Fibers
568(3)
17.4 Chromatic Dispersion and Prisms
571(4)
17.5 Formation of Images by Reflection
575(8)
17.5.1 Plane Mirrors
575(1)
17.5.2 Spherical Mirrors
576(7)
17.6 Formation of Images by Refraction
583(12)
17.6.1 Spherical Refracting Surfaces
583(1)
17.6.2 Flat Refracting Surfaces
584(2)
17.6.3 Thin Lenses
586(9)
17.7 Exercises
595(8)
18 Interference, Diffraction and Polarization of Light
603(34)
18.1 Interference of Light Waves
603(1)
18.2 Young's Double Slit Experiment
604(7)
18.3 Thin Films-Change of Phase Due to Reflection
611(4)
18.4 Diffraction of Light Waves
615(5)
18.5 Diffraction Gratings
620(4)
18.6 Polarization of Light Waves
624(3)
18.7 Exercises
627(10)
Part V Electricity
19 Electric Force
637(22)
19.1 Electric Charge
637(2)
19.2 Charging Conductors and Insulators
639(3)
19.3 Coulomb's Law
642(9)
19.4 Exercises
651(8)
20 Electric Fields
659(42)
20.1 The Electric Field
659(1)
20.2 The Electric Field of a Point Charge
660(6)
20.3 The Electric Field of an Electric Dipole
666(4)
20.4 Electric Field of a Continuous Charge Distribution
670(14)
20.4.1 The Electric Field Due to a Charged Rod
672(7)
20.4.2 The Electric Field of a Uniformly Charged Arc
679(2)
20.4.3 The Electric Field of a Uniformly Charged Ring
681(1)
20.4.4 The Electric Field of a Uniformly Charged Disk
682(2)
20.5 Electric Field Lines
684(2)
20.6 Motion of Charged Particles in a Uniform Electric Field
686(5)
20.7 Exercises
691(10)
21 Gauss's Law
701(30)
21.1 Electric Flux
701(4)
21.2 Gauss's Law
705(2)
21.3 Applications of Gauss's Law
707(10)
21.4 Conductors in Electrostatic Equilibrium
717(3)
21.5 Exercises
720(11)
22 Electric Potential
731(42)
22.1 Electric Potential Energy
731(2)
22.2 Electric Potential
733(2)
22.3 Electric Potential in a Uniform Electric Field
735(6)
22.4 Electric Potential Due to a Point Charge
741(4)
22.5 Electric Potential Due to a Dipole
745(2)
22.6 Electric Dipole in an External Electric Field
747(2)
22.7 Electric Potential Due to a Charged Rod
749(3)
22.8 Electric Potential Due to a Uniformly Charged Arc
752(1)
22.9 Electric Potential Due to a Uniformly Charged Ring
753(1)
22.10 Electric Potential Due to a Uniformly Charged Disk
754(2)
22.11 Electric Potential Due to a Uniformly Charged Sphere
756(1)
22.12 Electric Potential Due to a Charged Conductor
757(1)
22.13 Potential Gradient
758(3)
22.14 The Electrostatic Precipitator
761(1)
22.15 The Van de Graaff Generator
762(1)
22.16 Exercises
763(10)
23 Capacitors and Capacitance
773(36)
23.1 Capacitor and Capacitance
773(2)
23.2 Calculating Capacitance
775(6)
23.3 Capacitors with Dielectrics
781(9)
23.4 Capacitors in Parallel and Series
790(5)
23.5 Energy Stored in a Charged Capacitor
795(2)
23.6 Exercises
797(12)
24 Electric Circuits
809(50)
24.1 Electric Current and Electric Current Density
809(5)
24.2 Ohm's Law and Electric Resistance
814(9)
24.3 Electric Power
823(2)
24.4 Electromotive Force
825(4)
24.5 Resistors in Series and Parallel
829(5)
24.6 Kirchhoff's Rules
834(4)
24.7 The RC Circuit
838(6)
24.8 Exercises
844(15)
Part VI Magnetism
25 Magnetic Fields
859(30)
25.1 Magnetic Force on a Moving Charge
859(4)
25.2 Motion of a Charged Particle in a Uniform Magnetic Field
863(2)
25.3 Charged Particles in an Electric and Magnetic Fields
865(4)
25.3.1 Velocity Selector
866(1)
25.3.2 The Mass Spectrometer
866(1)
25.3.3 The Hall Effect
867(2)
25.4 Magnetic Force on a Current-Carrying Conductor
869(5)
25.5 Torque on a Current Loop
874(4)
25.5.1 Electric Motors
876(1)
25.5.2 Galvanometers
877(1)
25.6 Non-Uniform Magnetic Fields
878(1)
25.7 Exercises
879(10)
26 Sources of Magnetic Field
889(44)
26.1 The Biot-Savart Law
889(6)
26.2 The Magnetic Force Between Two Parallel Currents
895(2)
26.3 Ampere's Law
897(4)
26.4 Displacement Current and the Ampere-Maxwell Law
901(2)
26.5 Gauss's Law for Magnetism
903(1)
26.6 The Origin of Magnetism
904(4)
26.7 Magnetic Materials
908(2)
26.8 Diamagnetism and Paramagnetism
910(4)
26.9 Ferromagnetism
914(5)
26.10 Some Applications of Magnetism
919(2)
26.11 Exercises
921(12)
27 Faraday's Law, Alternating Current, and Maxwell's Equations
933(28)
27.1 Faraday's Law of Induction
933(3)
27.2 Motional emf
936(4)
27.3 Electric Generators
940(2)
27.4 Alternating Current
942(1)
27.5 Transformers
943(2)
27.6 Induced Electric Fields
945(2)
27.7 Maxwell's Equations of Electromagnetism
947(3)
27.8 Exercises
950(11)
28 Inductance, Oscillating Circuits, and AC Circuits
961(38)
28.1 Self-Inductance
961(3)
28.2 Mutual Inductance
964(2)
28.3 Energy Stored in an Inductor
966(1)
28.4 The L-R Circuit
967(4)
28.5 The Oscillating L-C Circuit
971(3)
28.6 The L-R-C Circuit
974(3)
28.7 Circuits with an ac Source
977(7)
28.8 L-R-C Series in an ac Circuit
984(4)
28.9 Resonance in L-R-C Series Circuit
988(1)
28.10 Exercises
988(11)
Appendix A Conversion Factors 999(4)
Appendix B Basic Rules and Formulas 1003(10)
Appendix C The Periodic Table of Elements 1013(2)
Answers to All Exercises 1015(42)
Index 1057
Professor Hafez A. Radi is Professor of Physics and Head of General Systems Engineering Department, Faculty of Engineering, MSA university, Egypt.  John O. Rasmussen is Emeritus Professor in the College of Chemistry at UC Berkeley, USA.