Atjaunināt sīkdatņu piekrišanu

E-grāmata: Principles of Quantitative Living Systems Science

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In 1978, when the book Living Systems was published, it contained the prediction that the sciences that were concerned with the biological and social sciences would, in the future, be stated as rigorously as the hard sciences that study such nonliving phenomena as temperature, distance, and the interaction of chemical elements. Principles of Quantitative Living Systems Science, the first of a planned series of three books, begins an attempt to fulfill that prediction. The view that living things are similar to other parts of the physical world, differing only in their complexity, was explicitly stated in the early years of the twentieth century by the biologist Ludwig von Bertalanffy. His ideas could not be published until the end of the war in Europe in the 1940s. Von Bertalanffy was strongly opposed to vitalism, the theory current among biologists at the time that life could only be explained by recourse to a vital principle or God. He c- sidered living things to be a part of the natural order, systems like atoms and molecules and planetary systems. Systems were described as being made up of a number of interrelated and interdependent parts, but because of the interrelations, the total system became more than the sum of those parts. These ideas led to the development of systems movements, in both Europe and the United States, that included not only biologists but scientists in other fields as well. Systems societies were formed on both continents.
Introduction
1(14)
Model for Emergence of the Quantitative Sciences
4(6)
Prerequisites for Quantitative Living Systems Science
10(1)
Fundamental Concepts
11(1)
First Principles
12(1)
Organization of This Book
12(3)
Quantification of Behavior
15(10)
Introduction
15(2)
Definition of Behavior
17(1)
Observation of Behavioral Phenomena
18(2)
Measurement of Behavioral Phenomena
20(3)
Available Energy
23(1)
Summary and Conclusion
24(1)
Capacity to Direct Energy
25(30)
Introduction
25(1)
General Concepts
26(6)
Minerals
32(5)
Plants
37(8)
Animals
45(8)
Summary
53(2)
Behavioral Information
55(32)
Introduction
55(1)
Neural Behavioral Information
56(9)
Chemical Behavioral Information
65(15)
Genetic Information
80(5)
Summary
85(2)
Fundamental Equations for the Behaviors of Animals
87(16)
Introduction
87(1)
The Quantitative Science Evolution Model
87(3)
Living Systems' Behavioral Relationships
90(1)
Quantitative Living Systems' Behavioral Relationships
91(7)
Specific Capacity to Direct Energy
98(1)
Multiple Motor Units
99(1)
Summary
100(3)
Living Systems Science Evolution
103(24)
Introduction
103(3)
Expanded Evolution Model
106(11)
Status of Living Systems Science Evolution
117(8)
The Next Phase
125(1)
Summary
125(2)
Autonomous Animal Behavior
127(42)
Introduction
127(1)
Concepts
128(7)
The Cardiovascular System
135(16)
The Respiratory System
151(12)
The Digestive System
163(4)
Summary and Conclusions
167(2)
Nonvolitional Behaviors
169(24)
Introduction
169(1)
Concepts
170(2)
The Thermal System
172(4)
The Gravitational System
176(8)
Light Energy Response
184(4)
Mechanical Environment
188(4)
Summary and Conclusions
192(1)
Volitional Behaviors
193(38)
Introduction
193(1)
Conceptual Volitional Motor Unit System
194(3)
Motoneuron Characteristics
197(4)
Volitional Motor Unit System Behaviors---Spatial summation
201(4)
Volitional Motor Unit System Behaviors---Temporal Summation
205(2)
Neural ``Decider'' Conceptual System
207(2)
Food Acquisition
209(15)
Thermal Phenomena Volitional Behaviors
224(5)
Summary
229(2)
Total Behavior of Individuals
231(26)
Introduction
231(1)
Methodology and Concepts
231(1)
Single-Cell animals
232(9)
Simple Multicellular Animals
241(5)
Coelenterates
246(6)
Vertebrates
252(1)
Humans
253(3)
Summary
256(1)
Summary and Findings
257(10)
Introduction
257(1)
Formulation of Ideas and Concepts
258(1)
Hypotheses
258(1)
Initial Testing and Verification
258(1)
Invention of a Fundamental Measure of Information
259(2)
Fundamental Equations
261(2)
Living Systems Science Evolution
263(1)
Testing and Validation
264(1)
Major Findings
265(1)
Other Findings and Applications
266(1)
Appendix Unit of Neural Information 267(6)
A.1. Introduction
267(1)
A.2. Information Associated with Heart Behavior
267(3)
A.3. Specific Capacity to Direct Energy
270(1)
A.4. Information Associated with Cardiovascular Behavior
271(1)
A.5. Summary
272(1)
References 273(3)
Index 276