Preface |
|
vii | |
|
|
1 | (14) |
|
1.1 Artificial Intelligence |
|
|
1 | (3) |
|
|
2 | (2) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (8) |
|
1.4.1 Classical computation |
|
|
7 | (1) |
|
1.4.2 Quantum computation |
|
|
8 | (2) |
|
1.4.3 Quantum machine learning |
|
|
10 | (2) |
|
1.4.4 Quantum-like models |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (12) |
|
|
15 | (4) |
|
2.1.1 Cantor's diagonal argument |
|
|
17 | (1) |
|
2.1.2 Reductio ad absurdum |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
19 | (1) |
|
|
19 | (2) |
|
|
21 | (1) |
|
2.3.1 Church-Turing-Deutsch principle |
|
|
21 | (1) |
|
|
21 | (6) |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.4.3 Von Neumann architecture |
|
|
24 | (3) |
|
|
27 | (18) |
|
3.1 Knowledge Representation |
|
|
27 | (6) |
|
|
28 | (1) |
|
3.1.2 Logic-based operators |
|
|
28 | (3) |
|
|
31 | (1) |
|
3.1.4 Categorial representation |
|
|
31 | (1) |
|
3.1.5 Binary vector representation |
|
|
32 | (1) |
|
|
33 | (5) |
|
|
34 | (2) |
|
|
36 | (1) |
|
3.2.3 Conflict resolution |
|
|
36 | (1) |
|
3.2.4 Human problem-solving |
|
|
37 | (1) |
|
|
37 | (1) |
|
3.3 Sub-Symbolic Models of Problem-Solving |
|
|
38 | (7) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (2) |
|
3.3.4 Euclidian geometry of the world |
|
|
42 | (3) |
|
|
45 | (38) |
|
4.1 Information and Thermodynamics |
|
|
45 | (10) |
|
|
47 | (1) |
|
|
48 | (1) |
|
4.1.3 Maxwell paradox and information |
|
|
49 | (1) |
|
|
50 | (5) |
|
4.2 Hierarchical Structures |
|
|
55 | (3) |
|
4.2.1 Example of a taxonomy |
|
|
57 | (1) |
|
4.3 Information and Measurement |
|
|
58 | (7) |
|
4.3.1 Information measure I |
|
|
60 | (3) |
|
4.3.2 Nature of information measure |
|
|
63 | (1) |
|
4.3.3 Measurement of angle |
|
|
63 | (1) |
|
4.3.4 Information and contour |
|
|
64 | (1) |
|
4.4 Information and Memory |
|
|
65 | (9) |
|
4.5 Sparse code for Sub-symbols |
|
|
74 | (3) |
|
4.5.1 Sparsification based on unary sub-vectors |
|
|
75 | (2) |
|
4.6 Deduction Systems and Associative Memory |
|
|
77 | (6) |
|
4.6.1 Taxonomic knowledge organization |
|
|
80 | (3) |
|
|
83 | (4) |
|
5.1 Reversible Computation |
|
|
83 | (1) |
|
|
84 | (3) |
|
|
84 | (1) |
|
5.2.2 Reversible Boolean gates |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (34) |
|
6.1 Kolmogorovs Probabilities |
|
|
87 | (10) |
|
6.1.1 Conditional probability |
|
|
88 | (1) |
|
6.1.2 Law of total probability |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
93 | (1) |
|
6.1.6 Naive Bayes and counting |
|
|
94 | (1) |
|
6.1.7 Counting and categorization |
|
|
95 | (2) |
|
|
97 | (5) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (2) |
|
6.5 Vector-Based Framework for Probabilities |
|
|
105 | (16) |
|
6.5.1 Vector based representation framework |
|
|
108 | (1) |
|
6.5.2 Conditional independence |
|
|
109 | (2) |
|
|
111 | (1) |
|
6.5.4 Partial dependency* |
|
|
111 | (1) |
|
|
112 | (3) |
|
|
115 | (3) |
|
6.5.7 Embodiment of representational framework |
|
|
118 | (1) |
|
6.5.8 From vector based framework to quantum physics |
|
|
119 | (2) |
|
7 Introduction to Quantum Physics |
|
|
121 | (32) |
|
|
121 | (2) |
|
7.1.1 Schrodinger's cat paradox |
|
|
122 | (1) |
|
7.1.2 Interpretations of quantum mechanics |
|
|
122 | (1) |
|
|
123 | (2) |
|
7.2.1 Stochastic Markov evolution and unitary evolution |
|
|
124 | (1) |
|
|
125 | (6) |
|
7.3.1 Spectral representation* |
|
|
127 | (4) |
|
7.4 Quantum Time Evolution |
|
|
131 | (1) |
|
|
132 | (3) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (11) |
|
7.9.1 Measuring a compound system |
|
|
138 | (1) |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
142 | (1) |
|
7.9.5 General Heisenberg's uncertainty principle* |
|
|
143 | (3) |
|
7.9.6 Heisenberg's uncertainty principle* |
|
|
146 | (1) |
|
|
147 | (1) |
|
7.10 Observables in Quantum Computing |
|
|
148 | (1) |
|
|
149 | (4) |
|
7.11.1 Deterministic chaos |
|
|
149 | (2) |
|
7.11.2 Kolmogorov complexity |
|
|
151 | (1) |
|
7.11.3 Humans and random numbers |
|
|
151 | (1) |
|
7.11.4 Randomness in quantum physics |
|
|
152 | (1) |
|
8 Computation with Qubits |
|
|
153 | (26) |
|
8.1 Computation with one Qubit |
|
|
153 | (2) |
|
8.2 Computation with m Qubit |
|
|
155 | (2) |
|
8.3 Matrix Representation of Serial and Parallel Operations |
|
|
157 | (2) |
|
|
159 | (2) |
|
8.5 Quantum Boolean Circuits |
|
|
161 | (3) |
|
|
164 | (2) |
|
8.7 Deutsch Jozsa Algorithm |
|
|
166 | (3) |
|
8.8 Amplitude Distribution |
|
|
169 | (4) |
|
|
170 | (1) |
|
|
171 | (2) |
|
|
173 | (6) |
|
|
179 | (30) |
|
|
179 | (2) |
|
9.2 Discrete Fourier Transform |
|
|
181 | (3) |
|
|
183 | (1) |
|
9.3 Quantum Fourier Transform |
|
|
184 | (3) |
|
|
187 | (1) |
|
|
188 | (5) |
|
9.5.1 QFT quantum circuit* |
|
|
189 | (4) |
|
|
193 | (2) |
|
9.7 The QFT Period Algorithm |
|
|
195 | (3) |
|
|
198 | (3) |
|
|
199 | (2) |
|
9.9 Kitaev's Phase Estimation Algorithm* |
|
|
201 | (4) |
|
|
204 | (1) |
|
|
205 | (4) |
|
|
209 | (32) |
|
10.1 Search and Quantum Oracle |
|
|
209 | (2) |
|
10.2 Lower Bound Ω(n) for Uf-based Search* |
|
|
211 | (5) |
|
|
212 | (2) |
|
|
214 | (1) |
|
|
215 | (1) |
|
10.3 Graver's Amplification |
|
|
216 | (15) |
|
10.3.1 Householder reflection |
|
|
216 | (2) |
|
10.3.2 Householder reflection and the mean value |
|
|
218 | (1) |
|
|
219 | (3) |
|
10.3.4 Iterative amplification |
|
|
222 | (7) |
|
10.3.5 Number of iterations |
|
|
229 | (1) |
|
|
230 | (1) |
|
10.4 Circuit Representation |
|
|
231 | (1) |
|
10.5 Speeding up the Traveling Salesman Problem |
|
|
232 | (2) |
|
10.6 The Generate-and-Test Method |
|
|
234 | (1) |
|
|
234 | (7) |
|
|
235 | (1) |
|
|
236 | (1) |
|
10.7.3 Quantum walk on a graph |
|
|
236 | (1) |
|
10.7.4 Quantum walk on one dimensional lattice |
|
|
237 | (2) |
|
10.7.5 Quantum walk and search |
|
|
239 | (1) |
|
10.7.6 Quantum walk for formula evaluation |
|
|
239 | (2) |
|
11 Quantum Problem-Solving |
|
|
241 | (24) |
|
11.1 Symbols and Quantum Reality |
|
|
241 | (1) |
|
11.2 Uninformed Tree Search |
|
|
242 | (3) |
|
|
245 | (6) |
|
11.3.1 Heuristic functions |
|
|
247 | (1) |
|
11.3.2 Invention of heuristic functions |
|
|
248 | (2) |
|
11.3.3 Quality of heuristic |
|
|
250 | (1) |
|
|
251 | (4) |
|
11.4.1 Principles of quantum tree search |
|
|
251 | (2) |
|
11.4.2 Iterative quantum tree search |
|
|
253 | (1) |
|
11.4.3 No constant branching factor |
|
|
254 | (1) |
|
11.5 Quantum Production System |
|
|
255 | (1) |
|
11.6 Tarrataca's Quantum Production System |
|
|
255 | (7) |
|
|
256 | (4) |
|
11.6.2 Extending for any n-puzzle |
|
|
260 | (1) |
|
11.6.3 Pure production system |
|
|
260 | (1) |
|
11.6.4 Unitary control strategy |
|
|
261 | (1) |
|
11.7 A General Model of a Quantum Computer |
|
|
262 | (3) |
|
11.7.1 Cognitive architecture |
|
|
263 | (1) |
|
|
264 | (1) |
|
12 Grover's Algorithm and the Input Problem |
|
|
265 | (16) |
|
|
265 | (1) |
|
12.2 Quantum Binding in Context of Associative Memory |
|
|
266 | (15) |
|
12.2.1 Proto logic and associative memory |
|
|
267 | (2) |
|
12.2.2 Familiarity discrimination |
|
|
269 | (1) |
|
12.2.3 Visual scene coding |
|
|
270 | (2) |
|
|
272 | (1) |
|
|
273 | (1) |
|
12.2.6 Quantum hybrid algorithm for sub-symbolic binding |
|
|
273 | (3) |
|
12.2.7 Quantum oracle for familiarity discrimination |
|
|
276 | (2) |
|
12.2.8 Grover's iteration |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
13 Statistical Machine Learning |
|
|
281 | (40) |
|
13.1 The Karhunen-Loeve Transform |
|
|
281 | (2) |
|
13.1.1 Principal component analysis |
|
|
283 | (1) |
|
|
283 | (4) |
|
|
284 | (1) |
|
|
285 | (1) |
|
13.2.3 Closed-form solution |
|
|
285 | (2) |
|
13.3 Linear Regression and Linear Artificial Neuron |
|
|
287 | (5) |
|
13.3.1 Cross entropy loss function |
|
|
290 | (2) |
|
13.4 Multiclass Linear Discriminant |
|
|
292 | (4) |
|
13.4.1 Cross entropy loss function for Softmax |
|
|
293 | (2) |
|
|
295 | (1) |
|
13.5 Networks with Hidden Nonlinear Layers |
|
|
296 | (4) |
|
13.5.1 Cross entropy error function |
|
|
296 | (1) |
|
|
297 | (3) |
|
|
300 | (1) |
|
13.6 Deep Learning and Backpropagation |
|
|
300 | (4) |
|
|
301 | (1) |
|
|
302 | (1) |
|
13.6.3 Second and first order optimization |
|
|
303 | (1) |
|
13.7 Support Vector Machines |
|
|
304 | (7) |
|
13.7.1 Optimal hyperplane for linear separable patterns |
|
|
306 | (1) |
|
13.7.2 Quadratic optimization for finding the optimal hyperplane |
|
|
307 | (2) |
|
|
309 | (2) |
|
13.8 Optimal Hyperplane for Non-separable Patterns |
|
|
311 | (1) |
|
|
312 | (1) |
|
13.9 Support Vector Machine as a Kernel Machine |
|
|
312 | (7) |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (4) |
|
|
319 | (2) |
|
|
319 | (1) |
|
|
320 | (1) |
|
14 Linear-Algebra Based Quantum Machine Learning |
|
|
321 | (20) |
|
14.1 Quantum Algorithm for Linear Systems of Equations |
|
|
321 | (12) |
|
|
321 | (1) |
|
14.1.2 Constraints for matrix multiplication and inversion |
|
|
322 | (1) |
|
14.1.3 HHL algorithm in machine learning |
|
|
323 | (1) |
|
14.1.4 Hamiltonian simulation |
|
|
324 | (3) |
|
14.1.5 Eigenvalue estimation |
|
|
327 | (3) |
|
14.1.6 Rotation conditioned on the eigenvalue |
|
|
330 | (2) |
|
14.1.7 Rotation for matrix multiplication |
|
|
332 | (1) |
|
14.1.8 Obtaining the solution |
|
|
332 | (1) |
|
14.2 Quantum Principal Component Analysis |
|
|
333 | (2) |
|
14.2.1 Measuring density matrix |
|
|
335 | (1) |
|
14.3 Quantum Random Access Memory |
|
|
335 | (2) |
|
|
335 | (2) |
|
|
337 | (2) |
|
|
337 | (2) |
|
14.4.2 Quantum advantage kernels |
|
|
339 | (1) |
|
|
339 | (2) |
|
|
341 | (24) |
|
|
341 | (2) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
343 | (9) |
|
|
344 | (1) |
|
15.2.2 Finite temperature dynamics |
|
|
344 | (1) |
|
15.2.3 Boltzmann-Gibbs distribution |
|
|
345 | (1) |
|
|
346 | (2) |
|
15.2.5 Stochastic dynamics |
|
|
348 | (1) |
|
|
349 | (2) |
|
15.2.7 Metropolis algorithm |
|
|
351 | (1) |
|
|
352 | (2) |
|
15.3.1 Combinatorial optimization |
|
|
353 | (1) |
|
|
354 | (6) |
|
15.4.1 Stochastic dynamics of the Boltzmann machine |
|
|
355 | (1) |
|
|
356 | (2) |
|
15.4.3 Proof of learning in Boltzmann machine* |
|
|
358 | (2) |
|
15.5 Harmonium - Restricted Boltzmann Machine |
|
|
360 | (1) |
|
15.5.1 Contrast divergence |
|
|
361 | (1) |
|
15.6 Deep Learning with Deep Belief Nets |
|
|
361 | (4) |
|
16 Adiabatic Quantum Computation and Quantum Annealing |
|
|
365 | (20) |
|
16.1 Adiabatic Computation |
|
|
365 | (7) |
|
16.1.1 Adiabatic optimization |
|
|
367 | (3) |
|
|
370 | (2) |
|
|
372 | (9) |
|
16.2.1 Problem Hamiltonian for Ising model |
|
|
373 | (2) |
|
|
375 | (6) |
|
16.3 Variational Algorithms |
|
|
381 | (4) |
|
16.3.1 Variational quantum eigensolvers |
|
|
381 | (1) |
|
16.3.2 Quantum approximate optimization algorithms |
|
|
382 | (3) |
|
|
385 | (30) |
|
|
385 | (2) |
|
|
387 | (2) |
|
17.2.1 Two-slit interference |
|
|
387 | (2) |
|
|
389 | (6) |
|
|
394 | (1) |
|
|
395 | (1) |
|
|
396 | (3) |
|
17.5.1 Normalized probability waves |
|
|
396 | (1) |
|
|
396 | (3) |
|
17.6 Balanced Probability Waves |
|
|
399 | (8) |
|
17.6.1 Prisoner's dilemma game and probability waves |
|
|
400 | (2) |
|
17.6.2 Two stage gambling game |
|
|
402 | (2) |
|
|
404 | (2) |
|
17.6.4 Quantum-like human decision making |
|
|
406 | (1) |
|
17.7 Quantum-like Bayesian Network* |
|
|
407 | (8) |
|
17.7.1 Probability waves sum to one according by the law of balance |
|
|
408 | (1) |
|
17.7.2 Probability waves are smaller equal one only after normalization |
|
|
409 | (1) |
|
17.7.3 Example of estimation of balanced phases |
|
|
409 | (2) |
|
17.7.4 Example of Bayesian network |
|
|
411 | (4) |
|
18 Quantum like-Evolution |
|
|
415 | (18) |
|
18.1 Evolutionary Dynamics |
|
|
415 | (1) |
|
18.2 Phase-Balanced Matrix |
|
|
416 | (3) |
|
|
416 | (1) |
|
18.2.2 Quantum law of total probability |
|
|
416 | (3) |
|
18.3 Quantum Like Evolution |
|
|
419 | (7) |
|
18.3.1 Constant phase evolution |
|
|
420 | (1) |
|
18.3.2 Dynamic quantum-like evolution |
|
|
421 | (5) |
|
18.4 Quasi Unitary Evolution* |
|
|
426 | (7) |
|
18.4.1 Strange oscillations* |
|
|
430 | (3) |
|
19 Quantum Computation and the Multiverse |
|
|
433 | (18) |
|
|
433 | (1) |
|
19.2 Deutsch's Decision-theoretic Argument |
|
|
434 | (5) |
|
19.2.1 Decision-theoretic argument |
|
|
435 | (4) |
|
19.3 Expected Utility and Entropy |
|
|
439 | (6) |
|
19.3.1 Weighted sum of surprisals |
|
|
440 | (2) |
|
19.3.2 Recovering probabilities from entropy |
|
|
442 | (1) |
|
19.3.3 Biological principle of energy minimization |
|
|
443 | (2) |
|
|
445 | (1) |
|
|
445 | (1) |
|
19.4.2 Explanation as a function of the brain |
|
|
446 | (1) |
|
|
446 | (5) |
|
19.5.1 Multiverse metaphor: Library of Babel metaphor |
|
|
447 | (2) |
|
|
449 | (2) |
|
|
451 | (4) |
|
|
451 | (2) |
|
|
453 | (2) |
Bibliography |
|
455 | (18) |
Index |
|
473 | |