Atjaunināt sīkdatņu piekrišanu

Principles Of Renewable Energy Engineering With Worked Examples [Hardback]

  • Formāts: Hardback, 628 pages
  • Izdošanas datums: 02-Sep-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811251142
  • ISBN-13: 9789811251146
  • Hardback
  • Cena: 204,27 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 628 pages
  • Izdošanas datums: 02-Sep-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811251142
  • ISBN-13: 9789811251146

In this volume, engineering principles of renewable energy are presented as extensions of the various subjects covered in regular engineering courses. Topics include solar thermal and solar PV power, wind power, energy storage, tidal power, wave power, and ocean thermal energy, and hydroelectric, geothermal and biomass systems. The comprehensive textbook brings the principles of renewable energy engineering together in a single book equivalent to that of a standard engineering title. A novel feature of this unique reference is the 30 worked examples and problems highlighted at the end of each chapter. Numerical answers are provided for all the problems. Readers should be able to avoid the need to refer to several books on individual energy sources to develop a course on renewable energy.

Preface vii
Chapter 1 Introduction to Energy Sources and Utilization
1(50)
1.1 Background
1(3)
1.2 Patterns of Global Energy Use
4(4)
1.3 Development of Renewable Energy
8(6)
1.3.1 Energy insecurity
8(1)
1.3.2 Fossil fuel resource depletion
9(1)
1.3.3 Environmental effects
10(2)
1.3.4 Development of solar, wind and biomass
12(2)
1.4 Renewable Energy Conversion Processes
14(4)
1.4.1 Solar energy conversion to heat and power
14(1)
1.4.2 Wind and wave energy conversion
15(1)
1.4.3 Ocean thermal energy conversion (OTEC)
16(1)
1.4.4 Biomass energy conversion
16(1)
1.4.5 Hydroelectric energy conversion
16(1)
1.4.6 Geothermal energy conversion
17(1)
1.4.7 Tidal energy conversion
17(1)
1.5 Cost Analysis of Energy Systems
18(7)
1.5.1 Life-cycle costing
18(1)
1.5.2 Time value of money
19(1)
1.5.3 Discounted cash flow analysis
19(1)
1.5.4 Effect of inflation
20(1)
1.5.5 Capital-recovery factor
20(1)
1.5.6 Economic figures of merit
21(3)
1.5.7 Levelized cost of energy
24(1)
1.6 Worked Examples
25(26)
Problems
46(2)
References
48(3)
Chapter 2 The Solar Resource
51(42)
2.1 Introduction
51(1)
2.2 Fundamentals of Solar Radiation
51(3)
2.2.1 Solar radiation spectrum
52(1)
2.2.2 Beam and diffuse radiation
53(1)
2.3 Direction of Beam Radiation
54(4)
2.4 Angle of Incidence of Beam Radiation
58(1)
2.5 Total Radiation on an Inclined Surface
59(2)
2.6 Clear-sky Model
61(3)
2.7 Estimation of Incident Radiation Under Real Conditions
64(5)
2.7.1 Clearness index
64(2)
2.7.2 Correlations for predicting solar radiation under real atmospheric conditions
66(3)
2.8 Estimation of Incident Solar Radiation on an Inclined Surface
69(1)
2.9 Worked Examples
69(24)
Problems
91(1)
References
92(1)
Chapter 3 Solar Process Heat Production
93(64)
3.1 Introduction
93(2)
3.1.1 Generic solar thermal system
94(1)
3.2 Solar Collectors
95(2)
3.2.1 Flat-plate collectors
95(1)
3.2.2 Efficiency of solar collectors
96(1)
3.3 Thermal Analysis of Flat-plate Collectors
97(12)
3.3.1 Absorption of solar radiation
98(2)
3.3.2 Heat loss through the cover system
100(4)
3.3.3 Useful energy collection
104(5)
3.4 Evacuated Tube Collectors
109(3)
3.5 Applications of Solar Thermal Systems
112(6)
3.5.1 Solar water heating
113(2)
3.5.2 Closed systems without storage
115(2)
3.5.3 Open systems with storage
117(1)
3.5.4 Closed systems with storage
117(1)
3.6 Worked Examples
118(39)
Problems
153(3)
References
156(1)
Chapter 4 Solar Thermal Power Generation
157(78)
4.1 Introduction
157(8)
4.1.1 Low-temperature solar power generation
157(2)
4.1.2 Medium and high temperature power systems
159(6)
4.2 Solar Concentrators
165(12)
4.2.1 Upper limit of concentration ratio
166(2)
4.2.2 Nonimaging concentrators
168(2)
4.2.3 Parabolic trough concentrators
170(6)
4.2.4 Paraboloidal concentrators
176(1)
4.2.5 Central receiver solar collectors
176(1)
4.3 Thermal Storage and Heat Transport
177(4)
4.4 Rankine Cycle
181(4)
4.4.1 Analysis of the Rankine cycle
183(2)
4.5 Gas Turbine Engine Cycles
185(4)
4.5.1 Analysis of the Brayton cycle
185(4)
4.6 Stirling Cycle
189(6)
4.6.1 Analysis of the Stirling cycle
191(1)
4.6.2 Effect of non-ideal regenerators
192(1)
4.6.3 Real Stirling engines
193(2)
4.7 Worked Examples
195(40)
Problems
230(3)
References
233(2)
Chapter 5 Solar Photovoltaic Power Generation
235(72)
5.1 Introduction
235(1)
5.2 Physical Processes in PV Cells
236(3)
5.2.1 Atomic structure of materials
237(1)
5.2.2 Atomic structure of silicon and the effect of light
238(1)
5.3 The Potential Barrier and its Function
239(8)
5.3.1 Negative - carrier and positive-carrier dopants
240(1)
5.3.2 Formation of the potential barrier
241(2)
5.3.3 Action of potential barrier under illumination
243(1)
5.3.4 Losses limiting solar cell efficiency
244(3)
5.4 Analysis of Photovoltaic Cells
247(2)
5.5 Solar Cell Parameters
249(7)
5.5.1 Short circuit current density
250(1)
5.5.2 Open circuit voltage
251(1)
5.5.3 Ideality factor
251(1)
5.5.4 Power output of a cell
251(2)
5.5.5 Fill factor of a cell
253(1)
5.5.6 Conversion efficiency
253(1)
5.5.7 External quantum efficiency
254(1)
5.5.8 Thermodynamic efficiency
254(1)
5.5.9 Ultimate conversion efficiency
255(1)
5.6 Effect of Solar Radiation and Cell Temperature
256(2)
5.7 Thermal Model for a PV Array
258(1)
5.8 Parasitic Resistances
258(2)
5.9 Multijunction Solar Cells
260(1)
5.10 Design of Photovoltaic Systems
261(9)
5.10.1 Direct-coupled PV systems
263(1)
5.10.2 Stand-alone PV systems
264(1)
5.10.3 Grid-connected PV power systems
265(1)
5.10.4 Design considerations of stand-alone systems
266(4)
5.11 Detailed Design Method
270(4)
5.12 Efficiency and Cost of Solar PV Cells
274(2)
5.13 Environmental Effects of Solar PV Cells
276(1)
5.14 Worked Examples
276(31)
Problems
303(3)
References
306(1)
Chapter 6 Wind Power Generation
307(76)
6.1 Introduction
307(1)
6.2 Types of Wind Turbines
308(4)
6.2.1 Horizontal axis wind turbines
308(2)
6.2.2 Vertical axis wind turbines
310(2)
6.3 Power Available in the Wind
312(1)
6.4 Power Output Curve of a Wind Turbine
313(1)
6.5 The Wind Resource
314(6)
6.5.1 Wind generation
315(1)
6.5.2 Atmospheric pressure and temperature
316(1)
6.5.3 Variation of wind speed with height
317(3)
6.6 Wind Speed Data Analysis
320(7)
6.6.1 The bin-method
322(1)
6.6.2 Statistical analysis of wind data
323(1)
6.6.3 Commonly used probability distribution functions
324(3)
6.7 Performance of Wind Turbines
327(7)
6.7.1 The actuator disk model
327(6)
6.7.2 Estimation of wind power generation
333(1)
6.8 Aerodynamic Design of Wind Turbines
334(7)
6.8.1 Blade element theory
335(6)
6.9 Turbine Components and Control
341(2)
6.10 Wind Farms
343(1)
6.11 Environmental Effects of Wind Energy Systems
344(1)
6.12 Cost Evaluation of Wind Power Systems
345(2)
6.13 Worked Examples
347(36)
Problems
378(3)
References
381(2)
Chapter 7 Energy Storage Systems
383(70)
7.1 Introduction
383(1)
7.2 Energy Storage Technologies
384(2)
7.2.1 Characteristics of energy storage systems
385(1)
7.3 Compressed Air Storage Systems (CAS)
386(5)
7.3.1 Air storage devices
388(1)
7.3.2 Analysis of CAS systems
389(2)
7.4 Flywheel Energy Storage Systems
391(3)
7.4.1 Analysis of flywheel storage systems
392(2)
7.5 Pumped Hydroelectric Energy Storage Systems (PHES)
394(2)
7.6 Battery Storage Systems
396(8)
7.6.1 Lead-acid batteries
397(2)
7.6.2 Lithium-ion batteries
399(1)
7.6.3 Flow batteries
400(1)
7.6.4 Battery characteristics
401(3)
7.7 Fuel Cells
404(5)
7.7.1 Analysis of fuel cells
405(4)
7.8 Supercapacitor Energy Storage Systems
409(2)
7.9 Thermal Energy Storage Systems
411(5)
7.9.1 Sensible heat storage
411(1)
7.9.2 Packed-bed thermal storage
412(2)
7.9.3 Phase change thermal storage
414(2)
7.10 Comparison of Different Energy Storage Technologies
416(1)
7.11 Worked Examples
416(37)
Problems
449(2)
References
451(2)
Chapter 8 Ocean Energy Conversion Systems
453(52)
8.1 Introduction
453(1)
8.2 Tidal Energy
453(14)
8.2.1 The tidal resource
454(3)
8.2.2 Analysis of tides
457(1)
8.2.3 Tidal range power generation
458(7)
8.2.4 Tidal stream power generation
465(2)
8.3 Wave Power Generation
467(10)
8.3.1 Characteristics of water waves
469(5)
8.3.2 Wave energy converters
474(3)
8.4 Ocean Thermal Energy Conversion (OTEC)
477(3)
8.4.1 Ocean thermal energy resource
477(1)
8.4.2 Closed-cycle thermal energy conversion
478(1)
8.4.3 Open-cycle thermal energy conversion
479(1)
8.5 Worked Examples
480(25)
Problems
501(1)
References
502(3)
Chapter 9 Hydropower and Geothermal Power
505(52)
9.1 Introduction
505(1)
9.2 Hydropower
505(1)
9.3 Development of Hydropower
506(1)
9.4 Operation of Modem Hydropower Schemes
507(8)
9.4.1 High-head schemes
507(1)
9.4.2 Energy analysis of high-head schemes
508(1)
9.4.3 Pelton turbine
509(3)
9.4.4 Medium-head schemes
512(1)
9.4.5 Low-head schemes
512(1)
9.4.6 Reaction turbines
513(1)
9.4.7 Analysis of the Francis turbine
514(1)
9.5 Geothermal Energy
515(1)
9.6 The Geothermal Resource
516(1)
9.7 Geothermal Power Generation
517(5)
9.7.1 Dry-steam power plants
518(1)
9.7.2 Flash-steam power plants
519(2)
9.7.3 Double-flash steam power plants
521(1)
9.7.4 Binary-fluid geothermal power plants
522(1)
9.8 Geothermal Heating and Cooling
522(5)
9.8.1 Geothermal district heating
523(1)
9.8.2 Geothermal heat pumps
523(4)
9.9 Worked Examples
527(30)
Problems
553(2)
References
555(2)
Chapter 10 Energy from Biomass
557(36)
10.1 Introduction
557(1)
10.2 Photosynthesis
557(2)
10.3 Main Sources of Biomass
559(2)
10.4 Bioenergy Conversion Processes
561(15)
10.4.1 Combustion of solid biomass
562(1)
10.4.2 Fixed-bed and fluidized-bed combustors
563(1)
10.4.3 Analysis of combustion processes
564(5)
10.4.4 Gasification of biomass
569(3)
10.4.5 Anaerobic digestion of biomass
572(2)
10.4.6 Liquid biofuels from biomass
574(2)
10.5 Energy and Environmental Costs of Biofuels
576(1)
10.6 Worked Examples
577(16)
Problems
590(2)
References
592(1)
Appendix A1 Transmission and Absorption of Solar Radiation
593(6)
A1.1 Fundamental Equations
593(1)
A1.1.1 Beer-Lambert law
594(1)
A1.2 Solar Radiation Transmission and Absorption
594(5)
A1.2.1 Effective properties of a single slab
594(2)
A1.2.2 Transmittance of a multi-layered cover system
596(1)
A1.2.3 Reflectance of multiple layers
597(1)
References
598(1)
Appendix A2 Heat Transfer Correlations
599(4)
A2.1 Heat Transfer Correlations for Solar Collectors
599(4)
A2.1.1 Heat transfer in an inclined rectangular cavity
599(1)
A2.1.2 Heat transfer due to wind
600(1)
A2.1.3 Forced convection across a cylinder
601(1)
A2.1.4 Forced convection inside tubes and rectangular ducts
601(1)
A2.1.5 Forced convection between parallel plates
602(1)
References
602(1)
Index 603