Atjaunināt sīkdatņu piekrišanu

Principles of Superconducting Quantum Computers [Hardback]

  • Formāts: Hardback, 384 pages, height x width x depth: 254x178x22 mm, weight: 875 g
  • Izdošanas datums: 05-Apr-2022
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119750725
  • ISBN-13: 9781119750727
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 110,57 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 384 pages, height x width x depth: 254x178x22 mm, weight: 875 g
  • Izdošanas datums: 05-Apr-2022
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119750725
  • ISBN-13: 9781119750727
Citas grāmatas par šo tēmu:
"Digital systems that are most familiar are based on binary digits, or "bits." Each bit can take on either the value "1" or "0", and any arbitrary data can be represented by such a binary representation. In addition, any arbitrary logical operation can be implemented using bits. The text refers to these familiar systems as "classical" systems, since they are governed by the everyday laws of classical physics. Quantum computing is different from classical computing in a number of significant ways, as discussed in 'Principles of superconducting quantum computers'"--

Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers

In Principles of Superconducting Quantum Computers, a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction.

Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques.

The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes:

  • A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates
  • Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations
  • Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits
  • In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and more

Ideal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.

List of Figures xiii
List of Tables xxv
Preface xxvii
Acknowledgments xxix
About the Companion Website xxxi
1 Qubits, Gates, and Circuits 1(24)
1.1 Bits and Qubits
1(3)
1.1.1 Circuits in Space vs. Circuits in Time
1(1)
1.1.2 Superposition
1(2)
1.1.3 No Cloning
3(1)
1.1.4 Reversibility
3(1)
1.1.5 Entanglement
3(1)
1.2 Single-Qubit States
4(1)
1.3 Measurement and the Born Rule
5(1)
1.4 Unitary Operations and Single-Qubit Gates
6(2)
1.5 Two-Qubit Gates
8(4)
1.5.1 Two-Qubit States
8(1)
1.5.2 Matrix Representation of Two-Qubit Gates
9(2)
1.5.3 Controlled-NOT
11(1)
1.6 Bell State
12(1)
1.7 No Cloning, Revisited
13(2)
1.8 Example: Deutsch's Problem
15(3)
1.9 Key Characteristics of Quantum Computing
18(1)
1.10 Quantum Computing Systems
18(4)
1.11 Exercises
22(3)
2 Physics of Single Qubit Gates 25(26)
2.1 Requirements for a Quantum Computer
25(1)
2.2 Single Qubit Gates
25(17)
2.2.1 Rotations
25(8)
2.2.2 Two State Systems
33(5)
2.2.3 Creating Rotations: Rabi Oscillations
38(4)
2.3 Quantum State Tomography
42(2)
2.4 Expectation Values and the Pauli Operators
44(1)
2.5 Density Matrix
45(3)
2.6 Exercises
48(3)
3 Physics of 7Wo Qubit Gates 51(12)
3.1 square root of iSWAP Gate
51(2)
3.2 Coupled Tunable Qubits
53(2)
3.3 Cross Resonance Scheme
55(2)
3.4 Other Controlled Gates
57(2)
3.5 Two-Qubit States and the Density Matrix
59(3)
3.6 Exercises
62(1)
4 Superconducting Quantum Computer Systems 63(44)
4.1 Transmission Lines
63(8)
4.1.1 General Transmission Line Equations
63(2)
4.1.2 Lossless Transmission Lines
65(2)
4.1.3 Transmission Lines with Loss
67(4)
4.2 Terminated Lossless Line
71(9)
4.2.1 Reflection Coefficient
71(1)
4.2.2 Power (Flow of Energy) and Return Loss
72(1)
4.2.3 Standing Wave Ratio (SWR)
73(1)
4.2.4 Impedance as a Function of Position
74(2)
4.2.5 Quarter Wave Transformer
76(1)
4.2.6 Coaxial, Microstrip, and Coplanar Lines
77(3)
4.3 S Parameters
80(1)
4.3.1 Lossless Condition
81(1)
4.3.2 Reciprocity
81(1)
4.4 Transmission (ABCD) Matrices
81(4)
4.5 Attenuators
85(2)
4.6 Circulators and Isolators
87(2)
4.7 Power Dividers/Combiners
89(3)
4.8 Mixers
92(3)
4.9 Low-Pass Filters
95(2)
4.10 Noise
97(7)
4.10.1 Thermal Noise
97(2)
4.10.2 Equivalent Noise Temperature
99(1)
4.10.3 Noise Factor and Noise Figure
100(1)
4.10.4 Attenuators and Noise
101(2)
4.10.5 Noise in Cascaded Systems
103(1)
4.11 Low Noise Amplifiers
104(1)
4.12 Exercises
105(2)
5 Resonators: Classical Treatment 107(20)
5.1 Parallel Lumped Element Resonator
107(2)
5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator
109(2)
5.3 Transmission Line Resonator
111(2)
5.4 Capacitive Coupling to a Transmission Line Resonator
113(4)
5.5 Capacitively-Coupled Lossless Resonators
117(3)
5.6 Classical Model of Qubit Readout
120(4)
5.7 Exercises
124(3)
6 Resonators: Quantum Treatment 127(32)
6.1 Lagrangian Mechanics
127(3)
6.1.1 Hamilton's Principle
127(1)
6.1.2 Calculus of Variations
128(1)
6.1.3 Lagrangian Equation of Motion
129(1)
6.2 Hamiltonian Mechanics
130(1)
6.3 Harmonic Oscillators
131(7)
6.3.1 Classical Harmonic Oscillator
131(2)
6.3.2 Quantum Mechanical Harmonic Oscillator
133(2)
6.3.3 Raising and Lowering Operators
135(2)
6.3.4 Can a Harmonic Oscillator Be Used as a Qubit?
137(1)
6.4 Circuit Quantum Electrodynamics
138(18)
6.4.1 Classical LC Resonant Circuit
138(1)
6.4.2 Quantization of the LC Circuit
139(1)
6.4.3 Circuit Electrodynamic Approach for General Circuits
140(1)
6.4.4 Circuit Model for Transmission Line Resonator
141(3)
6.4.5 Quantizing a Transmission Line Resonator
144(1)
6.4.6 Quantized Coupled LC Resonant Circuits
144(3)
6.4.7 Schrodinger, Heisenberg, and Interaction Pictures
147(3)
6.4.8 Resonant Circuits and Qubits
150(3)
6.4.9 The Dispersive Regime
153(3)
6.5 Exercises
156(3)
7 Theory of Superconductivity 159(36)
7.1 Bosons and Fermions
159(2)
7.2 Bloch Theorem
161(2)
7.3 Free Electron Model for Metals
163(9)
7.3.1 Discrete States in Finite Samples
163(3)
7.3.2 Phonons
166(1)
7.3.3 Debye Model
167(1)
7.3.4 Electron-Phonon Scattering and Electrical Conductivity
168(2)
7.3.5 Perfect Conductor vs. Superconductor
170(2)
7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity
172(13)
7.4.1 Cooper Pair Model
172(3)
7.4.2 Dielectric Function
175(1)
7.4.3 Jellium
176(3)
7.4.4 Scattering Amplitude and Attractive Electron-Electron Interaction
179(1)
7.4.5 Interpretation of Attractive Interaction
180(1)
7.4.6 Superconductor Hamiltonian
181(1)
7.4.7 Superconducting Ground State
182(3)
7.5 Electrodynamics of Superconductors
185(7)
7.5.1 Cooper Pairs and the Macroscopic Wave Function
185(1)
7.5.2 Potential Functions
186(1)
7.5.3 London Equations
187(2)
7.5.4 London Gauge
189(1)
7.5.5 Penetration Depth
190(1)
7.5.6 Flux Quantization
191(1)
7.6
Chapter Summary
192(1)
7.7 Exercises
193(2)
8 Josephson Junctions 195(16)
8.1 Tunneling
195(5)
8.1.1 Reflection from a Barrier
196(2)
8.1.2 Finite Thickness Barrier
198(2)
8.2 Josephson Junctions
200(7)
8.2.1 Current and Voltage Relations
200(3)
8.2.2 Josephson Junction Hamiltonian
203(2)
8.2.3 Quantized Josephson Junction Analysis
205(2)
8.3 Superconducting Quantum Interference Devices (SQUIDs)
207(1)
8.4 Josephson Junction Parametric Amplifiers
208(1)
8.5 Exercises
209(2)
9 Errors and Error Mitigation 211(16)
9.1 NISQ Processors
211(1)
9.2 Decoherence
212(2)
9.3 State Preparation and Measurement Errors
214(1)
9.4 Characterizing Gate Errors
215(4)
9.5 State Leakage and Suppression Using Pulse Shaping
219(1)
9.6 Zero-Noise Extrapolation
220(3)
9.7 Optimized Control Using Deep Learning
223(2)
9.8 Exercises
225(2)
10 Quantum Error Correction 227(36)
10.1 Review of Classical Error Correction
227(3)
10.1.1 Error Detection
228(1)
10.1.2 Error Correction: Repetition Code
228(1)
10.1.3 Hamming Code
229(1)
10.2 Quantum Errors
230(2)
10.3 Detecting and Correcting Quantum Errors
232(6)
10.3.1 Bit Flip
232(2)
10.3.2 Phase Flip
234(1)
10.3.3 Correcting Bit and Phase Flips: Shor's 9-Qubit Code
235(1)
10.3.4 Arbitrary Rotations
236(2)
10.4 Stabilizer Codes
238(4)
10.4.1 Stabilizers
238(1)
10.4.2 Stabilizers for Error Correction
239(3)
10.5 Operating on Logical Qubits
242(1)
10.6 Error Thresholds
243(2)
10.6.1 Concatenation of Error Codes
243(1)
10.6.2 Threshold Theorem
244(1)
10.7 Surface Codes
245(14)
10.7.1 Stabilizers
246(1)
10.7.2 Error Detection and Correction
247(3)
10.7.3 Logical X and Z Operators
250(3)
10.7.4 Multiple Qubits: Lattice Surgery
253(4)
10.7.5 CNOT
257(1)
10.7.6 Single-Qubit Gates
258(1)
10.8 Summary and Further Reading
259(2)
10.9 Exercises
261(2)
11 Quantum Logic: Efficient Implementation of Classical Computations 263(28)
11.1 Reversible Logic
264(4)
11.1.1 Reversible Logic Gates
264(2)
11.1.2 Reversible Logic Circuits
266(2)
11.2 Quantum Logic Circuits
268(4)
11.2.1 Entanglement and Uncomputing
269(1)
11.2.2 Multi-Qubit Gates
270(1)
11.2.3 Qubit Topology
270(2)
11.3 Efficient Arithmetic Circuits: Adder
272(11)
11.3.1 Quantum Ripple-Carry Adder
273(2)
11.3.2 In-Place Ripple-Carry Adder
275(2)
11.3.3 Carry-Lookahead Adder
277(4)
11.3.4 Adder Comparison
281(2)
11.4 Phase Logic
283(5)
11.4.1 Controlled-Z and Controlled-Phase Gates
283(2)
11.4.2 Selective Phase Change
285(2)
11.4.3 Phase Logic Gates
287(1)
11.5 Summary and Further Reading
288(1)
11.6 Exercises
289(2)
12 Some Quantum Algorithms 291(36)
12.1 Computational Complexity
291(3)
12.1.1 Quantum Program Run-Time
292(1)
12.1.2 Classical Complexity Classes
292(1)
12.1.3 Quantum Complexity
293(1)
12.2 Grover's Search Algorithm
294(5)
12.2.1 Grover Iteration
294(2)
12.2.2 Quantum Implementation
296(3)
12.2.3 Generalizations
299(1)
12.3 Quantum Fourier Transform
299(8)
12.3.1 Discrete Fourier Transform
300(1)
12.3.2 Inverse Discrete Fourier Transform
300(1)
12.3.3 Quantum Implementation of the DFT
301(1)
12.3.4 Encoding Quantum States
302(2)
12.3.5 Quantum Implementation
304(2)
12.3.6 Computational Complexity
306(1)
12.4 Quantum Phase Estimation
307(2)
12.4.1 Quantum Implementation
307(1)
12.4.2 Computational Complexity and Other Issues
308(1)
12.5 Shor's Algorithm
309(5)
12.5.1 Hybrid Classical-Quantum Algorithm
309(1)
12.5.2 Finding the Period
310(4)
12.5.3 Computational Complexity
314(1)
12.6 Variational Quantum Algorithms
314(10)
12.6.1 Variational Quantum Eigensolver
316(4)
12.6.2 Quantum Approximate Optimization Algorithm
320(3)
12.6.3 Challenges and Opportunities
323(1)
12.7 Summary and Further Reading
324(1)
12.8 Exercises
325(2)
Bibliography 327
Index 33
Daniel D. Stancil, PhD, is the Alcoa Distinguished Professor and Head of Electrical and Computer Engineering at North Carolina State University. In addition to quantum computing, his research interests include spin waves, and microwave and optical devices and systems.

Gregory T. Byrd, PhD, is Professor and Associate Head of Electrical and Computer Engineering at North Carolina State University. His research focuses on both classical and quantum computer architecture and systems.