List of Figures |
|
xiii | |
List of Tables |
|
xxv | |
Preface |
|
xxvii | |
Acknowledgments |
|
xxix | |
About the Companion Website |
|
xxxi | |
1 Qubits, Gates, and Circuits |
|
1 | (24) |
|
|
1 | (3) |
|
1.1.1 Circuits in Space vs. Circuits in Time |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 Measurement and the Born Rule |
|
|
5 | (1) |
|
1.4 Unitary Operations and Single-Qubit Gates |
|
|
6 | (2) |
|
|
8 | (4) |
|
|
8 | (1) |
|
1.5.2 Matrix Representation of Two-Qubit Gates |
|
|
9 | (2) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.7 No Cloning, Revisited |
|
|
13 | (2) |
|
1.8 Example: Deutsch's Problem |
|
|
15 | (3) |
|
1.9 Key Characteristics of Quantum Computing |
|
|
18 | (1) |
|
1.10 Quantum Computing Systems |
|
|
18 | (4) |
|
|
22 | (3) |
2 Physics of Single Qubit Gates |
|
25 | (26) |
|
2.1 Requirements for a Quantum Computer |
|
|
25 | (1) |
|
|
25 | (17) |
|
|
25 | (8) |
|
|
33 | (5) |
|
2.2.3 Creating Rotations: Rabi Oscillations |
|
|
38 | (4) |
|
2.3 Quantum State Tomography |
|
|
42 | (2) |
|
2.4 Expectation Values and the Pauli Operators |
|
|
44 | (1) |
|
|
45 | (3) |
|
|
48 | (3) |
3 Physics of 7Wo Qubit Gates |
|
51 | (12) |
|
3.1 square root of iSWAP Gate |
|
|
51 | (2) |
|
3.2 Coupled Tunable Qubits |
|
|
53 | (2) |
|
3.3 Cross Resonance Scheme |
|
|
55 | (2) |
|
3.4 Other Controlled Gates |
|
|
57 | (2) |
|
3.5 Two-Qubit States and the Density Matrix |
|
|
59 | (3) |
|
|
62 | (1) |
4 Superconducting Quantum Computer Systems |
|
63 | (44) |
|
|
63 | (8) |
|
4.1.1 General Transmission Line Equations |
|
|
63 | (2) |
|
4.1.2 Lossless Transmission Lines |
|
|
65 | (2) |
|
4.1.3 Transmission Lines with Loss |
|
|
67 | (4) |
|
4.2 Terminated Lossless Line |
|
|
71 | (9) |
|
4.2.1 Reflection Coefficient |
|
|
71 | (1) |
|
4.2.2 Power (Flow of Energy) and Return Loss |
|
|
72 | (1) |
|
4.2.3 Standing Wave Ratio (SWR) |
|
|
73 | (1) |
|
4.2.4 Impedance as a Function of Position |
|
|
74 | (2) |
|
4.2.5 Quarter Wave Transformer |
|
|
76 | (1) |
|
4.2.6 Coaxial, Microstrip, and Coplanar Lines |
|
|
77 | (3) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
4.4 Transmission (ABCD) Matrices |
|
|
81 | (4) |
|
|
85 | (2) |
|
4.6 Circulators and Isolators |
|
|
87 | (2) |
|
4.7 Power Dividers/Combiners |
|
|
89 | (3) |
|
|
92 | (3) |
|
|
95 | (2) |
|
|
97 | (7) |
|
|
97 | (2) |
|
4.10.2 Equivalent Noise Temperature |
|
|
99 | (1) |
|
4.10.3 Noise Factor and Noise Figure |
|
|
100 | (1) |
|
4.10.4 Attenuators and Noise |
|
|
101 | (2) |
|
4.10.5 Noise in Cascaded Systems |
|
|
103 | (1) |
|
4.11 Low Noise Amplifiers |
|
|
104 | (1) |
|
|
105 | (2) |
5 Resonators: Classical Treatment |
|
107 | (20) |
|
5.1 Parallel Lumped Element Resonator |
|
|
107 | (2) |
|
5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator |
|
|
109 | (2) |
|
5.3 Transmission Line Resonator |
|
|
111 | (2) |
|
5.4 Capacitive Coupling to a Transmission Line Resonator |
|
|
113 | (4) |
|
5.5 Capacitively-Coupled Lossless Resonators |
|
|
117 | (3) |
|
5.6 Classical Model of Qubit Readout |
|
|
120 | (4) |
|
|
124 | (3) |
6 Resonators: Quantum Treatment |
|
127 | (32) |
|
|
127 | (3) |
|
6.1.1 Hamilton's Principle |
|
|
127 | (1) |
|
6.1.2 Calculus of Variations |
|
|
128 | (1) |
|
6.1.3 Lagrangian Equation of Motion |
|
|
129 | (1) |
|
6.2 Hamiltonian Mechanics |
|
|
130 | (1) |
|
|
131 | (7) |
|
6.3.1 Classical Harmonic Oscillator |
|
|
131 | (2) |
|
6.3.2 Quantum Mechanical Harmonic Oscillator |
|
|
133 | (2) |
|
6.3.3 Raising and Lowering Operators |
|
|
135 | (2) |
|
6.3.4 Can a Harmonic Oscillator Be Used as a Qubit? |
|
|
137 | (1) |
|
6.4 Circuit Quantum Electrodynamics |
|
|
138 | (18) |
|
6.4.1 Classical LC Resonant Circuit |
|
|
138 | (1) |
|
6.4.2 Quantization of the LC Circuit |
|
|
139 | (1) |
|
6.4.3 Circuit Electrodynamic Approach for General Circuits |
|
|
140 | (1) |
|
6.4.4 Circuit Model for Transmission Line Resonator |
|
|
141 | (3) |
|
6.4.5 Quantizing a Transmission Line Resonator |
|
|
144 | (1) |
|
6.4.6 Quantized Coupled LC Resonant Circuits |
|
|
144 | (3) |
|
6.4.7 Schrodinger, Heisenberg, and Interaction Pictures |
|
|
147 | (3) |
|
6.4.8 Resonant Circuits and Qubits |
|
|
150 | (3) |
|
6.4.9 The Dispersive Regime |
|
|
153 | (3) |
|
|
156 | (3) |
7 Theory of Superconductivity |
|
159 | (36) |
|
|
159 | (2) |
|
|
161 | (2) |
|
7.3 Free Electron Model for Metals |
|
|
163 | (9) |
|
7.3.1 Discrete States in Finite Samples |
|
|
163 | (3) |
|
|
166 | (1) |
|
|
167 | (1) |
|
7.3.4 Electron-Phonon Scattering and Electrical Conductivity |
|
|
168 | (2) |
|
7.3.5 Perfect Conductor vs. Superconductor |
|
|
170 | (2) |
|
7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity |
|
|
172 | (13) |
|
|
172 | (3) |
|
7.4.2 Dielectric Function |
|
|
175 | (1) |
|
|
176 | (3) |
|
7.4.4 Scattering Amplitude and Attractive Electron-Electron Interaction |
|
|
179 | (1) |
|
7.4.5 Interpretation of Attractive Interaction |
|
|
180 | (1) |
|
7.4.6 Superconductor Hamiltonian |
|
|
181 | (1) |
|
7.4.7 Superconducting Ground State |
|
|
182 | (3) |
|
7.5 Electrodynamics of Superconductors |
|
|
185 | (7) |
|
7.5.1 Cooper Pairs and the Macroscopic Wave Function |
|
|
185 | (1) |
|
7.5.2 Potential Functions |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (2) |
8 Josephson Junctions |
|
195 | (16) |
|
|
195 | (5) |
|
8.1.1 Reflection from a Barrier |
|
|
196 | (2) |
|
8.1.2 Finite Thickness Barrier |
|
|
198 | (2) |
|
|
200 | (7) |
|
8.2.1 Current and Voltage Relations |
|
|
200 | (3) |
|
8.2.2 Josephson Junction Hamiltonian |
|
|
203 | (2) |
|
8.2.3 Quantized Josephson Junction Analysis |
|
|
205 | (2) |
|
8.3 Superconducting Quantum Interference Devices (SQUIDs) |
|
|
207 | (1) |
|
8.4 Josephson Junction Parametric Amplifiers |
|
|
208 | (1) |
|
|
209 | (2) |
9 Errors and Error Mitigation |
|
211 | (16) |
|
|
211 | (1) |
|
|
212 | (2) |
|
9.3 State Preparation and Measurement Errors |
|
|
214 | (1) |
|
9.4 Characterizing Gate Errors |
|
|
215 | (4) |
|
9.5 State Leakage and Suppression Using Pulse Shaping |
|
|
219 | (1) |
|
9.6 Zero-Noise Extrapolation |
|
|
220 | (3) |
|
9.7 Optimized Control Using Deep Learning |
|
|
223 | (2) |
|
|
225 | (2) |
10 Quantum Error Correction |
|
227 | (36) |
|
10.1 Review of Classical Error Correction |
|
|
227 | (3) |
|
|
228 | (1) |
|
10.1.2 Error Correction: Repetition Code |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (2) |
|
10.3 Detecting and Correcting Quantum Errors |
|
|
232 | (6) |
|
|
232 | (2) |
|
|
234 | (1) |
|
10.3.3 Correcting Bit and Phase Flips: Shor's 9-Qubit Code |
|
|
235 | (1) |
|
10.3.4 Arbitrary Rotations |
|
|
236 | (2) |
|
|
238 | (4) |
|
|
238 | (1) |
|
10.4.2 Stabilizers for Error Correction |
|
|
239 | (3) |
|
10.5 Operating on Logical Qubits |
|
|
242 | (1) |
|
|
243 | (2) |
|
10.6.1 Concatenation of Error Codes |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (14) |
|
|
246 | (1) |
|
10.7.2 Error Detection and Correction |
|
|
247 | (3) |
|
10.7.3 Logical X and Z Operators |
|
|
250 | (3) |
|
10.7.4 Multiple Qubits: Lattice Surgery |
|
|
253 | (4) |
|
|
257 | (1) |
|
10.7.6 Single-Qubit Gates |
|
|
258 | (1) |
|
10.8 Summary and Further Reading |
|
|
259 | (2) |
|
|
261 | (2) |
11 Quantum Logic: Efficient Implementation of Classical Computations |
|
263 | (28) |
|
|
264 | (4) |
|
11.1.1 Reversible Logic Gates |
|
|
264 | (2) |
|
11.1.2 Reversible Logic Circuits |
|
|
266 | (2) |
|
11.2 Quantum Logic Circuits |
|
|
268 | (4) |
|
11.2.1 Entanglement and Uncomputing |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (2) |
|
11.3 Efficient Arithmetic Circuits: Adder |
|
|
272 | (11) |
|
11.3.1 Quantum Ripple-Carry Adder |
|
|
273 | (2) |
|
11.3.2 In-Place Ripple-Carry Adder |
|
|
275 | (2) |
|
11.3.3 Carry-Lookahead Adder |
|
|
277 | (4) |
|
|
281 | (2) |
|
|
283 | (5) |
|
11.4.1 Controlled-Z and Controlled-Phase Gates |
|
|
283 | (2) |
|
11.4.2 Selective Phase Change |
|
|
285 | (2) |
|
|
287 | (1) |
|
11.5 Summary and Further Reading |
|
|
288 | (1) |
|
|
289 | (2) |
12 Some Quantum Algorithms |
|
291 | (36) |
|
12.1 Computational Complexity |
|
|
291 | (3) |
|
12.1.1 Quantum Program Run-Time |
|
|
292 | (1) |
|
12.1.2 Classical Complexity Classes |
|
|
292 | (1) |
|
12.1.3 Quantum Complexity |
|
|
293 | (1) |
|
12.2 Grover's Search Algorithm |
|
|
294 | (5) |
|
|
294 | (2) |
|
12.2.2 Quantum Implementation |
|
|
296 | (3) |
|
|
299 | (1) |
|
12.3 Quantum Fourier Transform |
|
|
299 | (8) |
|
12.3.1 Discrete Fourier Transform |
|
|
300 | (1) |
|
12.3.2 Inverse Discrete Fourier Transform |
|
|
300 | (1) |
|
12.3.3 Quantum Implementation of the DFT |
|
|
301 | (1) |
|
12.3.4 Encoding Quantum States |
|
|
302 | (2) |
|
12.3.5 Quantum Implementation |
|
|
304 | (2) |
|
12.3.6 Computational Complexity |
|
|
306 | (1) |
|
12.4 Quantum Phase Estimation |
|
|
307 | (2) |
|
12.4.1 Quantum Implementation |
|
|
307 | (1) |
|
12.4.2 Computational Complexity and Other Issues |
|
|
308 | (1) |
|
|
309 | (5) |
|
12.5.1 Hybrid Classical-Quantum Algorithm |
|
|
309 | (1) |
|
12.5.2 Finding the Period |
|
|
310 | (4) |
|
12.5.3 Computational Complexity |
|
|
314 | (1) |
|
12.6 Variational Quantum Algorithms |
|
|
314 | (10) |
|
12.6.1 Variational Quantum Eigensolver |
|
|
316 | (4) |
|
12.6.2 Quantum Approximate Optimization Algorithm |
|
|
320 | (3) |
|
12.6.3 Challenges and Opportunities |
|
|
323 | (1) |
|
12.7 Summary and Further Reading |
|
|
324 | (1) |
|
|
325 | (2) |
Bibliography |
|
327 | |
Index |
|
33 | |