Atjaunināt sīkdatņu piekrišanu

Printable Solar Cells [Hardback]

Edited by (TOBB University of Economics and Technology, Ankara, Turkey; Virginia Polytechnic and State University, USA), Edited by (TOBB University of Economics and Technology, Ankara, Turkey; Virginia Polytechnic and State University, USA)
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 278,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:
Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive.

Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV.

Audience

The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.
Preface xv
Part I: Hybrid Materials and Process Technologies for Printable Solar Cells
1 Organic and Inorganic Hybrid Solar Cells
3(34)
Serap Gunes
Niyazi Serdar Sariciftci
1.1 Introduction
4(1)
1.2 Organic/Inorganic Hybrid Solar Cells
5(18)
1.2.1 Introduction to Hybrid Solar Cells
5(1)
1.2.2 Hybrid Solar Cells
5(1)
1.2.2.1 Operational Principles of Bulk Heterojunction Hybrid Solar Cells
5(1)
1.2.2.2 Bulk Heterojunction Hybrid Solar Cells
8(1)
1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells
12(1)
1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells
15(1)
1.2.2.5 Dye-Sensitized Solar Cells
16(1)
1.2.2.6 Perovskite Solar Cells
21(2)
1.3 Conclusion
23(2)
References
25(12)
2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for Energy Applications
37(28)
J. Ciro
J.F. Montoya
R. Betancur
F. Jaramillo
2.1 Physical Chemical Principles of Film Formation by Solution Processes: From Suspensions of Nanoparticles and Solutions to Nucleation, Growth, Coarsening and Microstructural Evolution of Films
38(2)
2.2 Solution-Processing Techniques for Thin Film Deposition
40(6)
2.2.1 Spin Coating
42(1)
2.2.2 Doctor Blade
43(1)
2.2.3 Slot-Die Coating
44(2)
2.2.4 Spray Coating
46(1)
2.3 Properties and Characterization of Thin Films: Transport, Active and Electrode Layers in Thin Film Solar Cells
46(4)
2.4 Understanding the Crystallization Processes in Hybrid Semiconductor Films: Hybrid Perovskite as a Model
50(7)
2.4.1 Thermal Transitions Revealed by DSC
50(3)
2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar Cell
53(2)
2.4.3 Effect of the Annealing Process on Morphology and Crystalline Properties of Perovskite Films
55(1)
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite Films: Understanding the Role of Additives and Moisture in the Final Properties of Perovskite Layers
56(1)
References
57(8)
3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots
65(28)
Wenjin Yue
3.1 Introduction
65(2)
3.2 Polymer/QD Solar Cells
67(16)
3.2.1 Working Principle
67(1)
3.2.2 Device Parameters
68(1)
3.2.2.1 Open-Circuit Voltage (Voc)
68(1)
3.2.2.2 Short-Circuit Current (Jsc)
68(1)
3.2.2.3 Fill Factor (FF)
69(1)
3.2.3 Device Structure
70(1)
3.2.4 Progress of Polymer/QD Solar Cells
71(1)
3.2.4.1 Device Based on Cd Compound
71(1)
3.2.4.2 Device Based on Pb Compound
74(1)
3.2.4.3 Device Based on CuInS2
76(2)
3.2.5 Strategy for Improved Device Performance
78(1)
3.2.5.1 QDs Surface Treatment
78(1)
3.2.5.2 In-Situ Synthesis of QDs
81(1)
3.2.5.3 Polymer End-Group Functionalization
82(1)
3.3 Outlooks and Conclusions
83(1)
Acknowledgment
83(1)
References
84(9)
4 Hole Transporting Layers in Printable Solar Cells
93(70)
David Curiel
Miriam Mas-Montoya
4.1 Introduction
94(3)
4.2 Hole Transporting Layers in Organic Solar Cells
97(24)
4.2.1 Utility of Hole Transporting Layers
97(1)
4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the Open-Circuit Voltage
98(1)
4.2.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking Layer
102(1)
4.2.1.3 Optical Spacer
103(1)
4.2.1.4 Modulation of the Active Layer Morphology and Use as Protective Layer
103(1)
4.2.2 Overview of Materials Used as Hole Transporting Layers
104(1)
4.2.2.1 Polymers
104(1)
4.2.2.2 Small Molecules
109(1)
4.2.2.3 Metals
112(1)
4.2.2.4 Metal Oxides
112(1)
4.2.2.5 Metal Salts
116(1)
4.2.2.6 Carbon Nanotubes
116(1)
4.2.2.7 Graphene-Based Materials
116(1)
4.2.2.8 Self-Assembled Monolayers
119(2)
4.3 Hole Transporting Layers in Dye-Sensitized Solar Cells
121(6)
4.3.1 Overview of Materials Used as Hole Transporting Layers
123(1)
4.3.1.1 Small Molecules
123(1)
4.3.1.2 Polymers
126(1)
4.4 Hole Transporting Layers in Perovskite Solar Cells
127(16)
4.4.1 Overview of Materials Used as Hole Transporting Layers
128(1)
4.4.1.1 Small Molecules
128(1)
4.4.1.2 Polymers
137(1)
4.4.1.3 Metal Oxides
139(1)
4.4.1.4 Metal Salts
140(1)
4.4.1.5 Carbon Nanotubes
141(1)
4.4.1.6 Graphene-Based Materials
142(1)
4.5 Concluding Remarks
143(1)
References
143(20)
5 Printable Solar Cells
163(42)
Alexander Kovalenko
Michal Hrabal
5.1 Introduction
164(1)
5.2 Printable Solar Cells Working Principles
165(8)
5.2.1 GIGS Solar Cells
165(2)
5.2.2 Perovskite Solar Cells
167(3)
5.2.3 Organic Solar Cells
170(2)
5.2.4 Printable Charge-Carrier Selective Layers
172(1)
5.3 Solution-Based Deposition of Thin Film Layers
173(16)
5.3.1 Coating Techniques
174(1)
5.3.1.1 Casting
174(1)
5.3.1.2 Spin Coating
174(1)
5.3.1.3 Blade Coating
176(1)
5.3.1.4 Slot-Die Coating
177(2)
5.3.2 Printing Techniques
179(1)
5.3.2.1 Screen Printing
180(1)
5.3.2.2 Gravure Printing
182(1)
5.3.2.3 Flexographic Printing
184(1)
5.3.2.4 Inkjet Printing
185(4)
5.4 Characterization Techniques
189(5)
5.4.1 Characterization of Thin Layers
189(1)
5.4.2 Electrical Characterization of Solar Cells
190(4)
5.5 Conclusion
194(3)
References
197(8)
Part II: Organic Materials and Process Technologies for Printable Solar Cells
6 Spray-Coated Organic Solar Cells
205(30)
Yifan Zheng
Junsheng Yu
6.1 Introduction
205(1)
6.2 Introduction of Spray-Coating Method
206(10)
6.2.1 History of Spray Coating
206(1)
6.2.2 Spray-Coating Equipment
206(1)
6.2.2.1 Airbrush Spray Deposition
206(1)
6.2.2.2 Ultrasonic Spray Deposition
209(1)
6.2.2.3 Electrospray Deposition
210(2)
6.2.3 Spray-Coating Treatment
212(1)
6.2.3.1 Thermal Annealing
213(1)
6.2.3.2 Solvent Treatments
214(2)
6.3 Materials for Spray Coating
216(8)
6.3.1 Organic Materials
216(4)
6.3.2 Metal Oxide and Nanoparticles
220(2)
6.3.3 Perovskite
222(2)
6.4 Application of Spray Coating
224(2)
6.5 Conclusions
226(1)
Acknowledgment
226(1)
References
226(9)
7 Interface Engineering: A Key Aspect for the Potential Commercialization of Printable Organic Photovoltaic Cells
235(28)
Varun Vohra
Nur Tahirah Razali
Hideyuki Murata
7.1 Introduction
236(4)
7.2 SD-PSCs Based on P3HT:PCBM Active Layers
240(8)
7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of SD-PSCs
240(2)
7.2.2 Generation of Vertical Concentration Gradient by Addition of Regiorandom P3HT in SD-PSCs
242(4)
7.2.3 Generation of Vertical Concentration Gradient and Molecular Orientation by Rubbing P3HT in SD-PSCs
246(2)
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation Resulting from Active Layer/Substrate Interactions
248(4)
7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC Fabrication
252(5)
7.5 Conclusions
257(1)
References
258(5)
8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS Thin Films and Their Application in Solar Cells
263(28)
Sheng Hsiung Chang
Cheng-Chiang Chen
Hsin-Ming Cheng
Sheng-Hui Chen
8.1 Introduction
264(1)
8.2 Chemical Structure of PEDOT:PSS
265(2)
8.3 Optical and Electrical Characteristics of PEDOT:PSS
267(3)
8.4 Electronic Characteristics of PEDOT:PSS
270(1)
8.5 Highly Conductive PEDOT:PSS Thin Films
271(2)
8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films
273(8)
8.6.1 Effect of PEDOT/PSS Ratio
274(1)
8.6.2 Effect of Spin Rate
275(2)
8.6.3 Effect of Thermal Annealing Temperature
277(1)
8.6.4 Effects of Viscosity of PEDOT:PSS Solutions
278(3)
8.7 Directions for Future Development
281(2)
8.8 Conclusion 282 Reference
283(8)
Part III: Perovskites and Process Technologies for Printable Solar Cells
9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and Applications for Solar Cells
291(22)
Timur Sh. Atabaev
Nguyen Hoa Hong
9.1 Introduction
291(2)
9.2 Optical Properties of Organic-Inorganic Perovskite Materials
293(1)
9.3 Charge Transport Properties
294(1)
9.4 Electron Transporting Materials (ETM)
295(1)
9.5 Hole-Transporting Materials (HTM)
295(1)
9.6 Perovskite Solar Cells Architectures
296(2)
9.7 Perovskite Deposition Methods
298(2)
9.8 Photoexcited States
300(1)
9.9 Hysteresis
300(2)
9.10 Stability in Humid Environment
302(1)
9.11 Stability Under UV Light Exposure
302(1)
9.12 Stability at High Temperatures
303(1)
9.13 Additives
304(1)
9.14 Conclusions and Outlook
305(1)
Acknowledgment
306(1)
References
306(7)
10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and Roll-to-Roll Compatible Printing/Coating Processes
313(50)
Dechan Angmo
Mei Gao
Doojin Vak
10.1 Introduction
314(2)
10.2 Optoelectronic Properties
316(1)
10.3 History
317(1)
10.4 Device Configurations
318(3)
10.5 Functional Materials
321(6)
10.5.1 The Organic-Inorganic Halide Perovskites
322(2)
10.5.2 Electron-Selective Layer
324(1)
10.5.3 Hole-Selective Layer
325(1)
10.5.4 Transparent Electrode
325(1)
10.5.5 Counter Electrode
326(1)
10.6 Spin Coating
327(4)
10.7 Roll-to-Roll Processing
331(1)
10.8 Substrate Limitation
331(2)
10.9 Printing and Coating Methods
333(19)
10.9.1 Coating Methods
334(1)
10.9.1.1 Slot-Die Coating
334(1)
10.9.1.2 Spray Coating
339(1)
10.9.1.3 Doctor Blade Coating
342(1)
10.9.1.4 Knife Coating
344(1)
10.9.1.5 Reverse Gravure Coating
345(1)
10.9.2 Printing Methods
346(1)
10.9.2.1 Gravure Printing
346(1)
10.9.2.2 Flexographic Printing
347(1)
10.9.2.3 Screen Printing
349(1)
10.9.2.4 Inkjet Printing
350(2)
10.10 Future Outlook
352(1)
References
352(11)
11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells and Modules Based on Advanced Nanocomposite Materials
363(22)
Theodoros Makris
Argyroula Mourtzikou
Andreas Rapsomanikis
Elias Stathatos
11.1 Introduction
364(5)
11.1.1 Dye-Sensitized Solar Cells
364(3)
11.1.2 Perovskite Solar Cells
367(2)
11.2 Inkjet Printing Process
369(10)
11.2.1 Inkjet Printing in DSSC Technology
370(1)
11.2.1.1 Inkjet Printing of Transition Metal Oxides
372(1)
11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides
373(1)
11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes
374(3)
11.2.2 Inkjet Printing in Perovskite Solar Cell Technology
377(1)
11.2.2.1 Inkjet Printing of Perovskite Material
378(1)
11.3 Conclusions
379(1)
References
379(6)
Part IV: Inorganic Materials and Process Technologies for Printable Solar Cells
12 Solution-Processed Kesterite Solar Cells
385(38)
Fangyang Liu
12.1 Introduction
385(1)
12.2 Fundamental Aspects of Kesterite Solar Cells
386(7)
12.2.1 Crystal Structure
386(2)
12.2.2 Phase Space and Secondary Phases
388(2)
12.2.3 Optical and Electrical Properties
390(1)
12.2.4 Device Architecture
391(2)
12.3 Keterite Absorber Deposition Strategies
393(2)
12.4 Electrodeposition
395(5)
12.4.1 Stacked Elemental Layer (SEL) Electrodeposition
396(2)
12.4.2 Metallic Alloy Co-electrodeposition
398(1)
12.4.3 Chalcogenide Co-electrodeposition
399(1)
12.5 Direct Solution Coating
400(9)
12.5.1 Hydrazine Solution Coating
401(1)
12.5.2 Particulate-Based Solution Coating
402(3)
12.5.3 Molecular-Based Solution Coating
405(4)
12.6 Conclusion
409(1)
References
409(14)
13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards High-Performance Printable Solar Cells
423(34)
Xingtian Yin
Wenxiu Que
13.1 Introduction
424(2)
13.2 Transition Metal Oxides
426(14)
13.2.1 Molybdenum Oxide (MoOx, x <3)
426(2)
13.2.2 Nickel Oxide (NiO)
428(1)
13.2.2.1 Mesoscopic NiO Perovskite Solar Cells
428(1)
13.2.2.2 Planar NiO Perovskite Solar Cells
429(10)
13.2.3 Binary Copper Oxide (CuO and Cu2O)
439(1)
13.2.4 Other Transition Metal Oxides
440(1)
13.3 Non-Oxide Copper Compounds
440(4)
13.3.1 Cuprous Iodide (CuI)
441(1)
13.3.2 Cuprous Rhodanide (CuSCN)
441(1)
13.3.3 Copper Sulfide (CuS)
442(1)
13.3.4 CuA1O2
443(1)
13.3.5 CuInS2 and Cu2ZnSnS4
444(1)
13.4 Other Inorganic HTMs
444(2)
13.4.1 PdS Quantum Dots (QDs)
444(1)
13.4.2 Two-Dimensional (2D) Materials
445(1)
13.5 Towards Printable Solar Cells
446(3)
13.6 Conclusions and Perspectives
449(1)
Acknowledgment
450(1)
References
450(7)
14 Electrode Materials for Printable Solar Cells
457(56)
Lijun Hu
Ke Yang
Wei Chen
Falin Wu
Jiehao Fu
Wenbo Sun
Hongyan Huang
Baomin Zhao
Kuan Sun
Jianyong Ouyang
14.1 Introduction
458(1)
14.2 Transparent Conjugated Polymers
459(4)
14.2.1 Solvent Additive Method
460(1)
14.2.2 Post-Treatment of PEDOT:PSS Films
461(2)
14.2.3 Printing PEDOT:PSS Inks
463(1)
14.3 Carbon-Based Nanomaterials
463(13)
14.3.1 Graphene
466(6)
14.3.2 Carbon Nanotubes
472(4)
14.4 Metallic Nanostructures
476(10)
14.4.1 Metal Nanomeshes
476(4)
14.4.2 Metal Nanowire Networks
480(2)
14.4.3 Ultrathin Metal Films
482(4)
14.5 Multilayer Thin Films
486(5)
14.6 Printable Metal Back Electrodes
491(3)
14.7 Carbon-Based Back Electrodes
494(3)
14.8 Summary and Outlook
497(1)
Acknowledgment
498(1)
References
498(15)
15 Photonic Crystals for Photon Management in Solar Cells
513(36)
Shuai Zhang
Zhongze Gu
Jian-Ning Ding
15.1 Introduction
513(2)
15.2 Fundamentals of PCs
515(3)
15.3 Fabrication Strategies of PCs for Photovoltaics
518(12)
15.3.1 1D Multilayer PCs
519(5)
15.3.2 2D PCs
524(3)
15.3.3 3D PCs
527(3)
15.4 Different Functionalities of PCs in Solar Cells
530(10)
15.4.1 PC Reflectors
531(4)
15.4.2 PC Absorbers
535(3)
15.4.3 Front-Side PCs
538(2)
15.4.4 PCs for Other Functionalities
540(1)
15.5 Summary and Outlook
540(2)
Acknowledgment
542(1)
References
542(7)
Index 549
Nurdan Demirci Sankir is currently an Associate Professor in the Materials Science and Nanotechnology Engineering Department at the TOBB University of Economics and Technology, Ankara, Turkey. She received her M.Eng and PhD degrees in Materials Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. She then joined NanoSonic Inc. in Virginia, USA as R&D engineer and program manager, and in 2007 she enrolled at TOBB ETU where she established the Energy Research and Solar Cell Laboratories. Nurdan has actively carried out research activities in many areas including solar driven water splitting, photocatalytic degradation and nanostructured semiconductors.

Mehmet Sankir received his PhD in Macromolecular Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. He is currently an Associate Professor in the Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey and group leader of Advanced Membrane Technologies Laboratory. Mehmet has actively carried out research and consulting activities in the areas of membranes for fuel cells, flow batteries, hydrogen generation and desalination.