Atjaunināt sīkdatņu piekrišanu

E-grāmata: Printed Flexible Sensors: Fabrication, Characterization and Implementation

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents recent advances in the design, fabrication and implementation of flexible printed sensors. It explores a range of materials for developing the electrode and substrate parts of the sensors, on the basis of their electrical and mechanical characteristics. The sensors were processed using laser cutting and 3D printing techniques, and the sensors developed were employed in a number of healthcare, environmental and industrial applications, including: monitoring of physiological movements, respiration, salinity and nitrate measurement, and tactile sensing. The type of sensor selected for each application depended on its dimensions, robustness and sensitivity. The sensors fabricated were also embedded in an IoT-based system, allowing them to be integrated into real-time applications.


1 Introduction 1(16)
1.1 Flexible Sensors
1(5)
1.2 Printed Electronics
6(3)
1.3 Conclusion
9(1)
1.4 The Aim of the Book
10(1)
1.5 Research Contributions
11(1)
References
12(5)
2 Literature Review 17(66)
2.1 Introduction
17(1)
2.2 Carbon Nanotubes and Their Sensor-Based Applications
18(8)
2.2.1 Synthesis of Carbon Nanotubes
18(2)
2.2.2 Characterization and Properties
20(1)
2.2.3 Electrochemical Sensors
21(1)
2.2.4 Strain Sensors
22(2)
2.2.5 Electrical Sensors
24(2)
2.2.6 Conclusion and Future Work
26(1)
2.3 Graphene and Its Sensor-Based Applications
26(25)
2.3.1 Synthesis of Graphene
28(4)
2.3.2 Characterization and Properties
32(5)
2.3.3 Electrochemical Sensors
37(4)
2.3.4 Strain Sensors
41(2)
2.3.5 Electrical Sensors
43(3)
2.3.6 Challenges with the Current Sensors
46(3)
2.3.7 Conclusion and Future Work
49(2)
2.4 Wearable Flexible Sensors
51(12)
2.4.1 Materials for Wearable Flexible Sensors
53(2)
2.4.2 Sensor Networks for Wearable Flexible Sensors
55(2)
2.4.3 Types of Activity Monitoring with Wearable Flexible Sensors
57(4)
2.4.4 Challenges and Future Opportunities
61(2)
2.5 Conclusions
63(1)
References
63(20)
3 Interdigitated Sensing and Electrochemical Impedance Spectroscopy 83(8)
3.1 Introduction
83(1)
3.2 Planar Interdigital Sensors
84(3)
3.3 Electrochemical Impedance Spectroscopy (EIS)
87(2)
3.4 Conclusions
89(1)
References
89(2)
4 Carbon Nanotubes-Polydimethylsiloxane Sensor 91(24)
4.1 Introduction
91(1)
4.2 Fabrication of the Sensor Patches
92(3)
4.3 Frequency Response and Stress-Strain Measurements
95(2)
4.4 Monitoring of Physiological Parameters
97(9)
4.4.1 Experimental Setup
99(1)
4.4.2 Results and Discussion
100(4)
4.4.3 Conclusion
104(2)
4.5 Tactile Sensing
106(6)
4.5.1 Experimental Setup
107(1)
4.5.2 Results and Discussion
108(4)
4.5.3 Conclusion
112(1)
4.6
Chapter Summary
112(1)
References
112(3)
5 Aluminium-Polyethylene Terephthalate Sensor 115(14)
5.1 Introduction
115(1)
5.2 Fabrication of the Sensor Patches
115(4)
5.3 Frequency Response and Stress-Strain Measurements
119(2)
5.4 Tactile Sensing
121(6)
5.5
Chapter Summary
127(1)
References
127(2)
6 Graphite-Polyimide Sensor 129(40)
6.1 Introduction
129(1)
6.2 Fabrication of the Sensor Patches
130(3)
6.3 Complex Nonlinear Least Squares Curve Fitting
133(1)
6.4 Salinity Sensing
134(9)
6.4.1 Experimental Setup
136(1)
6.4.2 Results and Discussion
137(4)
6.4.3 Microcontroller-Based Sensing System
141(2)
6.4.4 Conclusion
143(1)
6.5 Taste Sensing
143(11)
6.5.1 Experimental Setup
145(1)
6.5.2 Results and Discussion
146(6)
6.5.3 Conclusion
152(2)
6.6 Nitrate Sensing
154(10)
6.6.1 Experimental Setup
155(1)
6.6.2 Comparative Analysis of Two Different Sensors
156(1)
6.6.3 Temperature and Nitrate-N Measurement
156(1)
6.6.4 IoT-Enabled Smart Sensing System
157(1)
6.6.5 Results and Discussion
158(5)
6.6.6 Conclusion
163(1)
6.7
Chapter Summary
164(1)
References
165(4)
7 Graphite-Polydimethylsiloxane Sensor 169(24)
7.1 Introduction
169(1)
7.2 Fabrication of the Sensor Patches
170(3)
7.3 Frequency Response and Stress-Strain Measurements
173(7)
7.4 Strain Sensing
180(7)
7.4.1 Experimental Setup
181(1)
7.4.2 Results and Discussion
182(5)
7.4.3 Conclusion
187(1)
7.5 Force Sensing
187(2)
7.5.1 Experimental Setup
188(1)
7.5.2 Results and Discussion
188(1)
7.5.3 Conclusion
189(1)
7.6
Chapter Summary
189(1)
References
190(3)
8 Conclusion, Challenges and Future Work 193
8.1 Conclusion
193(1)
8.2 Challenges of the Existing Work
194(1)
8.3 Future Work
195(3)
References
198