Atjaunināt sīkdatņu piekrišanu

E-grāmata: Privacy, Security, and Trust in KDD: First ACM SIGKDD International Workshop, PinKDD 2007, San Jose, CA, USA, August 12, 2007, Revised, Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 4890
  • Izdošanas datums: 21-Mar-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540784784
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 4890
  • Izdošanas datums: 21-Mar-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540784784
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Vast amounts of data are collected by service providers and system administ- tors, and are available in public information systems. Data mining technologies provide an ideal framework to assist in analyzing such collections for computer security and surveillance-related endeavors. For instance, system administrators can apply data mining to summarize activity patterns in access logs so that potential malicious incidents can be further investigated. Beyond computer - curity, data mining technology supports intelligence gathering and summari- tion for homeland security. For years, and most recently fueled by events such as September 11, 2001, government agencies have focused on developing and applying data mining technologies to monitor terrorist behaviors in public and private data collections. Theapplicationof data mining to person-speci cdata raisesseriousconcerns regarding data con dentiality and citizens' privacy rights. These concerns have led to the adoption of various legislation and policy controls. In 2005, the - ropean Union passed a data-retention directive that requires all telephone and Internetservice providersto store data ontheir consumers for up to two yearsto assist in the prevention of terrorismand organized crime. Similar data-retention regulationproposalsareunderheateddebateintheUnitedStatesCongress. Yet, the debate often focuses on ethical or policy aspects of the problem, such that resolutions have polarized consequences; e. g. , an organization can either share data for data mining purposes or it can not. Fortunately, computer scientists, and data mining researchers in particular, have recognized that technology can beconstructedtosupportlesspolarizedsolutions. Computerscientistsaredev- oping technologies that enable data mining goals without sacri cing the privacy and security of the individuals to whom the data correspond.
Invited Paper
An Ad Omnia Approach to Defining and Achieving Private Data Analysis
1
Cynthia Dwork
Contributed Papers
Phoenix: Privacy Preserving Biclustering on Horizontally Partitioned Data
14
Waseem Ahmad and Ashfaq Khokhar
Allowing Privacy Protection Algorithms to Jump Out of Local Optimums: An Ordered Greed Framework
33
Rhonda Chaytor
Probabilistic Anonymity
56
Sachin Lodha and Dilys Thomas
Website Privacy Preservation for Query Log Publishing
80
Barbara Poblete, Myra Spiliopoulou, and Ricardo Baeza-Yates
Privacy-Preserving Data Mining through Knowledge Model Sharing
97
Patrick Sharkey, Hongwei Tian, Weining Zhong, and Shouhuai Xu
Privacy-Preserving Sharing of Horizontally-Distributed Private Data for Constructing Accurate Classifiers
116
Vincent Yan Fu Tan and See-Kiong Ng
Towards Privacy-Preserving Model Selection
138
Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright
Preserving the Privacy of Sensitive Relationships in Graph Data
153
Elena Zheleva and Lise Getoor
Author Index 173