Part I Fundamentals |
|
|
|
3 | (12) |
|
|
3 | (1) |
|
1.1.1 Effects of Uncertainty |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.3 Basic Probabilistic Models |
|
|
5 | (3) |
|
|
7 | (1) |
|
1.4 Probabilistic Graphical Models |
|
|
8 | (2) |
|
1.5 Representation, Inference and Learning |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (12) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (5) |
|
2.3.1 Two Dimensional Random Variables |
|
|
22 | (1) |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (16) |
|
|
27 | (1) |
|
|
28 | (1) |
|
3.3 Trajectories and Circuits |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
|
3.8 Ordering and Triangulation Algorithms |
|
|
35 | (2) |
|
3.8.1 Maximum Cardinality Search |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (2) |
|
|
39 | (4) |
Part II Probabilistic Models |
|
|
|
43 | (28) |
|
|
43 | (2) |
|
4.1.1 Classifier Evaluation |
|
|
44 | (1) |
|
|
45 | (4) |
|
4.2.1 Naive Bayesian Classifier |
|
|
46 | (3) |
|
|
49 | (1) |
|
4.4 Alternative Models: TAN, BAN |
|
|
50 | (2) |
|
4.5 Semi-naive Bayesian Classifiers |
|
|
52 | (2) |
|
4.6 Multidimensional Bayesian Classifiers |
|
|
54 | (5) |
|
4.6.1 Multidimensional Bayesian Network Classifiers |
|
|
55 | (1) |
|
|
56 | (3) |
|
4.7 Hierarchical Classification |
|
|
59 | (3) |
|
4.7.1 Chained Path Evaluation |
|
|
59 | (2) |
|
4.7.2 Hierarchical Classification with Bayesian Networks |
|
|
61 | (1) |
|
|
62 | (4) |
|
4.8.1 Visual Skin Detection |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (2) |
|
|
68 | (3) |
|
|
71 | (22) |
|
|
71 | (1) |
|
|
72 | (4) |
|
5.2.1 Parameter Estimation |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (10) |
|
|
78 | (2) |
|
|
80 | (2) |
|
|
82 | (2) |
|
5.3.4 Gaussian Hidden Markov Models |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (3) |
|
|
86 | (1) |
|
5.4.2 Gesture Recognition |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (3) |
|
|
93 | (18) |
|
|
93 | (2) |
|
|
95 | (3) |
|
6.2.1 Regular Markov Random Fields |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (1) |
|
6.5.1 Parameter Estimation with Labeled Data |
|
|
101 | (1) |
|
6.6 Conditional Random Fields |
|
|
102 | (2) |
|
|
104 | (4) |
|
|
104 | (2) |
|
6.7.2 Improving Image Annotation |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
7 Bayesian Networks: Representation and Inference |
|
|
111 | (42) |
|
|
111 | (1) |
|
|
112 | (10) |
|
|
113 | (4) |
|
|
117 | (5) |
|
|
122 | (21) |
|
7.3.1 Singly Connected Networks: Belief Propagation |
|
|
123 | (5) |
|
7.3.2 Multiple Connected Networks |
|
|
128 | (10) |
|
7.3.3 Approximate Inference |
|
|
138 | (3) |
|
7.3.4 Most Probable Explanation |
|
|
141 | (1) |
|
7.3.5 Continuous Variables |
|
|
141 | (2) |
|
|
143 | (6) |
|
7.4.1 Information Validation |
|
|
143 | (4) |
|
7.4.2 Reliability Analysis |
|
|
147 | (2) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (2) |
|
8 Bayesian Networks: Learning |
|
|
153 | (28) |
|
|
153 | (1) |
|
|
153 | (7) |
|
|
154 | (1) |
|
8.2.2 Parameter Uncertainty |
|
|
154 | (1) |
|
|
155 | (3) |
|
|
158 | (2) |
|
|
160 | (10) |
|
|
161 | (1) |
|
8.3.2 Learning a Polytree |
|
|
162 | (2) |
|
8.3.3 Search and Score Techniques |
|
|
164 | (5) |
|
8.3.4 Independence Tests Techniques |
|
|
169 | (1) |
|
8.4 Combining Expert Knowledge and Data |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (4) |
|
8.6.1 Air Pollution Model for Mexico City |
|
|
172 | (3) |
|
8.6.2 Agricultural Planning Using Bayesian Networks |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (3) |
|
9 Dynamic and Temporal Bayesian Networks |
|
|
181 | (24) |
|
|
181 | (1) |
|
9.2 Dynamic Bayesian Networks |
|
|
182 | (7) |
|
|
183 | (1) |
|
|
183 | (4) |
|
|
187 | (1) |
|
9.2.4 Dynamic Bayesian Network Classifiers |
|
|
188 | (1) |
|
9.3 Temporal Event Networks |
|
|
189 | (5) |
|
9.3.1 Temporal Nodes Bayesian Networks |
|
|
189 | (5) |
|
|
194 | (5) |
|
9.4.1 DBN: Gesture Recognition |
|
|
194 | (3) |
|
9.4.2 TNBN: Predicting HIV Mutational Pathways |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
200 | (2) |
|
|
202 | (3) |
Part III Decision Models |
|
|
|
205 | (24) |
|
|
205 | (1) |
|
|
206 | (3) |
|
|
206 | (3) |
|
|
209 | (2) |
|
|
211 | (9) |
|
|
211 | (1) |
|
|
212 | (7) |
|
|
219 | (1) |
|
|
220 | (6) |
|
10.5.1 Decision Support System for Lung Cancer |
|
|
220 | (3) |
|
10.5.2 Decision-Theoretic Caregiver |
|
|
223 | (3) |
|
|
226 | (1) |
|
|
226 | (2) |
|
|
228 | (1) |
|
11 Markov Decision Processes |
|
|
229 | (20) |
|
|
229 | (1) |
|
|
230 | (3) |
|
|
233 | (2) |
|
|
233 | (1) |
|
|
234 | (1) |
|
11.3.3 Complexity Analysis |
|
|
234 | (1) |
|
|
235 | (4) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (6) |
|
11.5.1 Power Plant Operation |
|
|
239 | (3) |
|
11.5.2 Robot Task Coordination |
|
|
242 | (3) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (2) |
|
12 Partially Observable Markov Decision Processes |
|
|
249 | (20) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (8) |
|
|
253 | (3) |
|
12.3.2 Solution Algorithms |
|
|
256 | (3) |
|
|
259 | (6) |
|
12.4.1 Automatic Adaptation in Virtual Rehabilitation |
|
|
259 | (3) |
|
12.4.2 Hierarchical POMDPs for Task Planning in Robotics |
|
|
262 | (3) |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
266 | (3) |
Part IV Relational, Causal and Deep Models |
|
|
13 Relational Probabilistic Graphical Models |
|
|
269 | (18) |
|
|
269 | (1) |
|
|
270 | (3) |
|
13.2.1 Propositional Logic |
|
|
271 | (1) |
|
13.2.2 First-Order Predicate Logic |
|
|
272 | (1) |
|
13.3 Probabilistic Relational Models |
|
|
273 | (2) |
|
|
275 | (1) |
|
|
275 | (1) |
|
13.4 Markov Logic Networks |
|
|
275 | (3) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
278 | (5) |
|
|
278 | (3) |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (2) |
|
14 Graphical Causal Models |
|
|
287 | (20) |
|
|
287 | (1) |
|
14.1.1 Definition of Causality |
|
|
288 | (1) |
|
14.2 Causal Bayesian Networks |
|
|
288 | (4) |
|
14.2.1 Gaussian Linear Models |
|
|
290 | (2) |
|
|
292 | (3) |
|
|
292 | (2) |
|
|
294 | (1) |
|
14.4 Front Door and Back Door Criterion |
|
|
295 | (2) |
|
14.4.1 Back Door Criterion |
|
|
295 | (1) |
|
14.4.2 Front Door Criterion |
|
|
295 | (2) |
|
|
297 | (5) |
|
14.5.1 Characterizing Patterns of Unfairness |
|
|
297 | (1) |
|
14.5.2 Accelerating Reinforcement Learning with Causal Models |
|
|
298 | (4) |
|
|
302 | (1) |
|
|
302 | (3) |
|
|
305 | (2) |
|
|
307 | (20) |
|
|
307 | (2) |
|
|
309 | (3) |
|
15.2.1 Markov Equivalence Classes Under Causal Sufficiency |
|
|
310 | (1) |
|
15.2.2 Markov Equivalence Classes with Unmeasured Variables |
|
|
311 | (1) |
|
15.3 Causal Discovery Algorithms |
|
|
312 | (8) |
|
15.3.1 Score-Based Causal Discovery |
|
|
313 | (1) |
|
15.3.2 Constraint-Based Causal Discovery |
|
|
314 | (4) |
|
15.3.3 Casual Discovery with Linear Models |
|
|
318 | (2) |
|
|
320 | (3) |
|
15.4.1 Learning a Causal Model for ADHD |
|
|
320 | (1) |
|
15.4.2 Decoding Brain Effective Connectivity Based on fNIRS |
|
|
321 | (2) |
|
|
323 | (1) |
|
|
323 | (1) |
|
|
324 | (3) |
|
16 Deep Learning and Graphical Models |
|
|
327 | (20) |
|
|
327 | (1) |
|
16.2 Review of Neural Networks and Deep Learning |
|
|
328 | (4) |
|
|
328 | (2) |
|
16.2.2 Deep Neural Networks |
|
|
330 | (2) |
|
16.3 Graphical Models and Neural Networks |
|
|
332 | (1) |
|
16.3.1 Naives Bayes Classifiers Versus Perceptrons |
|
|
332 | (3) |
|
16.3.2 Bayesian Networks Versus Multi-layer Neural Networks |
|
|
334 | (1) |
|
|
335 | (4) |
|
16.4.1 Testing Bayesian Networks |
|
|
335 | (2) |
|
16.4.2 Integrating Graphical and Deep Models |
|
|
337 | (2) |
|
|
339 | (5) |
|
16.5.1 Human Body Pose Tracking |
|
|
339 | (2) |
|
16.5.2 Neural Enhanced Belief Propagation for Error Correction |
|
|
341 | (3) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
345 | (2) |
Appendix A: A Python Library for Inference and Learning |
|
347 | (2) |
Glossary |
|
349 | (4) |
Index |
|
353 | |