Atjaunināt sīkdatņu piekrišanu

E-grāmata: Probability and Statistics: with Integrated Software Routines

(University of Dayton, Dayton, U.S.A.)
  • Formāts: PDF+DRM
  • Izdošanas datums: 25-Oct-2005
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080480381
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 93,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 25-Oct-2005
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080480381
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Probability & Statistics with Integrated Software Routines is a calculus-based treatment of probability concurrent with and integrated with statistics through interactive, tailored software applications designed to enhance the phenomena of probability and statistics. The software programs make the book unique.

The book comes with a CD containing the interactive software leading to the Statistical Genie. The student can issue commands repeatedly while making parameter changes to observe the effects. Computer programming is an excellent skill for problem solvers, involving design, prototyping, data gathering, testing, redesign, validating, etc, all wrapped up in the scientific method.

* Incorporates more than 1,000 engaging problems with answers
* Includes more than 300 solved examples
* Uses varied problem solving methods

Recenzijas

"It has more examples and they are good ones. It is definitely a good source...I like that this book even has quizzes. This is a book that will help students to have a better understanding of probability and statistics by using many hands-on software simulations." - Leming Qu, Boise State University

Papildus informācija

More than 1,000 engaging problems with answers
Preface xv
Acknowledgments xx
Introduction to Probability
1(82)
Introduction
2(2)
Interpretations of Probability
4(4)
Objectivists
5(1)
Classical (a priori)
5(1)
Empirical or Relative Frequency (a posteriori)
5(2)
Mathematical or Axiomatic
7(1)
Sets
8(2)
Set Algebra
8(2)
Probability Parlance
10(3)
Probability Theorems
13(1)
Conditional Probability and Independence
14(5)
Bayes's Rule
19(4)
Counting the Ways
23(34)
Two Fundamental Principles of Counting (FPC) and the Pigeonhole Principle
23(4)
Tree Diagrams
27(1)
Permutations
28(4)
Combinations
32(14)
Match Problem Revisited
46(11)
Summary
57(26)
Problems
60(4)
Miscellaneous
64(6)
Software Exercises
70(11)
Self Quiz 1A: Conditional Probability
81(1)
Self Quiz 1B: Poker Probability
82(1)
Random Variables, Moments, and Distributions
83(75)
Introduction
84(1)
Random Variables
84(7)
Distributions
91(5)
Moments
96(16)
Information Content (Entropy)
104(4)
Higher Moments
108(4)
Standardized Random Variables
112(2)
Jointly Distributed Random Variables
114(6)
Discrete Joint Density Functions
117(3)
Independence of Jointly Distributed Random Variables
120(1)
Covariance and Correlation
121(5)
Conditional Densities Functions
126(5)
Moment Generating Functions
131(3)
Transformation of Variables
134(4)
Transformation of 2 or More Variables
136(2)
Summary
138(20)
Problems
140(5)
Review
145(2)
Paradoxes
147(2)
Software Exercises
149(7)
Self Quiz 2: Moments
156(2)
Special Discrete Distributions
158(57)
Introduction
159(1)
Discrete Uniform
159(4)
Bernoulli Distribution
163(1)
Binomial Distribution
164(10)
Multinomial Distribution
174(1)
Hypergeometric Distribution
175(5)
Geometric Distribution
180(4)
Negative Binomial Distribution
184(3)
Poisson Distribution
187(7)
Summary
194(21)
Problems
196(9)
Review
205(1)
Software Exercises
206(8)
Self Quiz 3: Discrete Distributions
214(1)
Special Continuous Distributions
215(54)
Introduction
216(1)
Continuous Uniform Distribution
216(4)
Gamma Function
220(1)
Gamma Family (Exponential, Chi-Square, Gamma)
221(3)
Exponential Distribution
224(4)
Chi-Square Distribution
228(3)
Normal Distribution
231(12)
Student t Distribution
243(2)
Beta Distribution
245(2)
Weibull Distribution
247(3)
F Distribution
250(2)
Summary
252(17)
Problems
255(5)
Miscellaneous
260(1)
Review
261(1)
Software Exercises
262(6)
Self Quiz 4: Continuous Distributions
268(1)
Sampling, Data Displays, Measures of Central Tendencies, Measures of Dispersion, and Simulation
269(56)
Introduction
270(1)
Data Displays
271(6)
Boxplots
273(1)
Frequency Distributions and Histograms
274(3)
Measures of Location
277(10)
Mean
277(2)
Median
279(3)
Mode
282(3)
Trimmed Mean
285(2)
Robustness
287(1)
Measures of Dispersion
287(8)
Sample Variance and Standard Deviation
287(1)
Interquartile Range (IQR)
288(1)
Median Absolute Deviation from the Median (MAD)
288(1)
Outliers
289(2)
Coefficient of Variation
291(1)
Skewness
292(1)
Kurtosis
293(2)
Joint Distribution of X and S2
295(3)
Simulation of Random Variables
298(8)
Rejection Method
303(3)
Using Monte Carlo for Integration
306(1)
Order Statistics
307(3)
Summary
310(15)
Problems
313(3)
Software Exercises
316(8)
Self Quiz 5: Sampling and Data Displays
324(1)
Point and Interval Estimation
325(61)
Introduction
326(1)
Unbiased Estimators and Point Estimates
327(6)
Cramer-Rao Inequality
329(4)
Methods of Finding Point Estimates
333(14)
Method of Moments Estimators (MME)
333(4)
Maximum Likelihood Estimators (MLE)
337(10)
Interval Estimates (Confidence Intervals)
347(13)
Trade-Off: Sample Size
351(1)
Confidence Interval When σ Is Not Known
352(1)
Confidence Interval for the Difference between Two Means (μ1 -- μ2)
353(2)
Confidence Interval for σ2 of a Normal Distribution
355(1)
Confidence Interval for a Proportion
355(2)
Confidence Interval for the Difference between Two Proportions
357(1)
Confidence Interval for the Paired T-Test
358(1)
Confidence Intervals for Ratio of Variances σ2/2/σ2/1
358(2)
Prediction Intervals
360(1)
Central Limit Theorem (Revisited)
361(2)
Parametric Bootstrap Estimation
363(3)
Summary
366(20)
Problems
369(2)
Confidence Intervals
371(2)
Miscellaneous
373(2)
Software Exercises
375(9)
Self Quiz 6: Estimation and Confidence Intervals
384(2)
Hypothesis Testing
386(69)
Introduction
387(1)
Terminology in Statistical Tests of Hypotheses
387(10)
Hypothesis Tests: Means
397(6)
P-value
400(2)
Directional Tests
402(1)
Hypothesis Tests: Proportions
403(4)
Fisher-Irwin Test
405(2)
Hypothesis Tests for Difference between Two Means: Small Samples (n ≤ 30) σ2 Known
407(4)
n < 30; σ2 Unknown
408(3)
Hypothesis Test with Paired Samples
411(3)
Paired vs. Unpaired
412(2)
Statistically Significant vs. Practically Significant
414(1)
Hypothesis Tests: Variances
414(3)
Hypothesis Tests for the Equality of Two Variances
416(1)
Hypothesis Tests for Independence, Homogeneity, and Goodness of Fit
417(18)
R x C Contingency Tables Test for Homogeneity and Independence
418(6)
Goodness of Fit
424(4)
Probability Plots
428(7)
Summary
435(20)
Problems
437(8)
Miscellaneous
445(3)
Software Exercises
448(5)
Self Test 7: Hypothesis Testing
453(2)
Regression
455(92)
Introduction
456(1)
Review of Joint and Conditional Densities
457(2)
Simple Linear Regression
459(7)
Least Squares Estimation
461(4)
Other Models of Simple Linear Regression
465(1)
Distribution of Estimators with Inference on Parameters
466(17)
Distribution of RV E
467(2)
Distribution of RV Y1
469(2)
Distribution of RV B
471(2)
Inference on the Slope β
473(3)
Distribution of RV A
476(1)
Inference on the Intercept α
477(1)
Distribution of RV Y
478(5)
Variation
483(3)
Coefficient of Determination
485(1)
Residual Analysis
486(7)
Lack of Fit F-Test
490(3)
Convertible Nonlinear Forms for Linear Regression
493(1)
Polynomial Regression
494(4)
Multiple Linear Regression
498(8)
Multiple Linear Regression with Matrices
501(5)
Multiple Regression Techniques
506(14)
Forward Selection
506(1)
Backward Elimination
507(1)
Model Variables Selection Criteria
508(6)
Stepwise Regression
514(6)
Correlation Analysis
520(4)
Summary
524(23)
Problems
527(6)
Miscellaneous
533(3)
Software Exercises
536(9)
Self Test 8: Regression
545(2)
Analysis of Variance
547(62)
Introduction
548(1)
Single-Factor Analysis
548(14)
The Bartlett Test for Homogeneity of Variances
560(2)
Two-Way ANOVA without Replication
562(4)
To Block or Not to Block
565(1)
Two-Way ANOVA with Replication
566(5)
Multiple Comparisons of Treatment Means
571(15)
Contrasts
572(6)
Contrast Confidence Intervals
578(1)
Least Significant Difference (LSD), Fisher LSD, and Scheffe Procedures
579(2)
Tukey Method
581(2)
Bonferroni Method
583(2)
Tukey Method vs. Bonferroni Method
585(1)
ANOVA and Regression
586(4)
Analysis of Means (ANOM)
590(3)
Graphical Analysis of Treatment Means
592(1)
Summary
593(16)
Problems
596(6)
Review
602(1)
Software Exercises
603(4)
Self Quiz 9: Analysis of Variance
607(2)
Nonparametric Statistics
609(50)
Introduction
610(1)
The Sign Test
610(3)
Nonparametric Bootstrap Estimation
613(1)
The Sign Test for Paired Data
614(1)
Type II Beta Error for the Sign-Test
615(1)
The Wilcoxon Signed-Rank Test
615(3)
Wilcoxon-Mann-Whitney (WMW) Rank Test for Two Samples
618(5)
Spearman Rank Order Correlation Coefficient
623(2)
Kendall's Rank Correlation Coefficient (t)
625(1)
Nonparametric Tests for Regression
626(4)
Nonparametric Tests for ANOVA
630(7)
Kruskal-Wallis
630(4)
Friedman Test
634(3)
Runs Test
637(4)
Randomization Tests
641(4)
Summary
645(14)
Problems
647(6)
Software Exercises
653(6)
Appendix A 659(3)
Appendix B 662(17)
References 679(2)
Index 681