Preface |
|
xiii | |
|
|
xxi | |
|
Chapter 1 Sums of Independent Random Variables |
|
|
1 | (58) |
|
|
1 | (13) |
|
1.1.1 Independent σ-Algebras |
|
|
1 | (3) |
|
1.1.2 Independent Functions |
|
|
4 | (1) |
|
1.1.3 The Radomachor Functions |
|
|
5 | (2) |
|
|
7 | (7) |
|
1.2 The Weak Law of Large Numbers |
|
|
14 | (6) |
|
1.2.1 Orthogonal Random Variables |
|
|
14 | (1) |
|
1.2.2 Independent Random Variables |
|
|
15 | (1) |
|
1.2.3 Approximate Identities |
|
|
16 | (4) |
|
|
20 | (2) |
|
1.3 Cramer's Theory of Large Deviations |
|
|
22 | (13) |
|
|
31 | (4) |
|
1.4 The Strong Law of Large Numbers |
|
|
35 | (14) |
|
|
42 | (7) |
|
1.5 Law of the Iterated Logarithm |
|
|
49 | (10) |
|
|
56 | (3) |
|
Chapter 2 The Central Limit Theorem |
|
|
59 | (56) |
|
2.1 The Basic Central Limit Theorem |
|
|
60 | (11) |
|
2.1.1 Lindeberg's Theorem |
|
|
60 | (2) |
|
2.1.2 The Central Limit Theorem |
|
|
62 | (3) |
|
|
65 | (6) |
|
2.2 The Berry-Esseen Theorem via Stein's Method |
|
|
71 | (11) |
|
|
72 | (3) |
|
2.2.2 The Classical Berry Esseen Theorem |
|
|
75 | (6) |
|
|
81 | (1) |
|
2.3 Some Extensions of The Central Limit Theorem |
|
|
82 | (14) |
|
2.3.1 The Fourier Transform |
|
|
82 | (2) |
|
2.3.2 Multidimensional Central Limit Theorem |
|
|
84 | (3) |
|
|
87 | (3) |
|
|
90 | (6) |
|
2.4 An Application to Hermite Multipliers |
|
|
96 | (14) |
|
2.4.1 Hermite Multipliers |
|
|
96 | (5) |
|
|
101 | (4) |
|
2.4.3 Applications of Beckner's Theorem |
|
|
105 | (5) |
|
|
110 | (5) |
|
Chapter 3 Infinitely Divisible Laws |
|
|
115 | (36) |
|
3.1 Convergence of Measures on RN |
|
|
5 | (117) |
|
3.1.1 Sequential Compactness in M1RN |
|
|
116 | (1) |
|
3.1.2 Levy's Continuity Theorem |
|
|
117 | (2) |
|
|
119 | (3) |
|
3.2 The Levy-Khinchine Formula |
|
|
122 | (17) |
|
3.2.1 I(RN) Is the Closure of P(RN) |
|
|
123 | (3) |
|
|
126 | (11) |
|
|
137 | (2) |
|
|
139 | (12) |
|
|
139 | (2) |
|
|
141 | (6) |
|
|
147 | (4) |
|
|
151 | (42) |
|
4.1 Stochastic Processes, Some Generalities |
|
|
152 | (8) |
|
|
153 | (3) |
|
|
156 | (3) |
|
|
159 | (1) |
|
4.2 Discontinuous Levy Processes |
|
|
160 | (17) |
|
4.2.1 The Simple Poisson Process |
|
|
161 | (2) |
|
4.2.2 Compound Poisson Processes |
|
|
163 | (5) |
|
4.2.3 Poisson Jump Processes |
|
|
168 | (2) |
|
4.2.4 Levy Processes with Bounded Variation |
|
|
170 | (1) |
|
4.2.5 General, Non-Gaussian Levy Processes |
|
|
171 | (3) |
|
|
174 | (3) |
|
4.3 Brownian Motion, the Gaussian Levy Process |
|
|
177 | (16) |
|
4.3.1 Deconstructing Brownian Motion |
|
|
178 | (2) |
|
4.3.2 Levy's Construction of Brownian Motion |
|
|
180 | (2) |
|
4.3.3 Levy's Construction in Context |
|
|
182 | (1) |
|
4.3.4 Brownian Paths Are Non-Differentiable |
|
|
183 | (2) |
|
4.3.5 General Levy Processes |
|
|
185 | (2) |
|
|
187 | (6) |
|
Chapter 5 Conditioning and Martingales |
|
|
193 | (40) |
|
|
193 | (12) |
|
5.1.1 Kolmogorov's Definition |
|
|
194 | (4) |
|
|
198 | (4) |
|
|
202 | (3) |
|
5.2 Discrete Parameter Martingales |
|
|
205 | (28) |
|
5.2.1 Doob's Inequality and Marcinkewitz's Theorem |
|
|
206 | (6) |
|
5.2.2 Doob's Stopping Time Theorem |
|
|
212 | (2) |
|
5.2.3 Martingale Convergence Theorem |
|
|
214 | (3) |
|
5.2.4 Reversed Martingales and De Finetti's Theory |
|
|
217 | (4) |
|
5.2.5 An Application to a Tracking Algorithm |
|
|
221 | (5) |
|
|
226 | (7) |
|
Chapter 6 Some Extensions and Applications of Martingale Theory |
|
|
233 | (33) |
|
|
233 | (11) |
|
6.1.1 Martingale Theory for a σ-Finite Measure Space |
|
|
233 | (6) |
|
6.1.2 Banach Space--Valued Martingales |
|
|
239 | (1) |
|
|
240 | (4) |
|
6.2 Elements of Ergodic Theory |
|
|
244 | (13) |
|
6.2.1 The Maximal Ergodic Lemma |
|
|
245 | (3) |
|
6.2.2 Birkhoff's Ergodic Theorem |
|
|
248 | (3) |
|
6.2.3 Stationary Sequences |
|
|
251 | (2) |
|
6.2.4 Continuous Parameter Ergodic Theory |
|
|
253 | (3) |
|
|
256 | (1) |
|
6.3 Burkholder's Inequality |
|
|
257 | (9) |
|
6.3.1 Burkholder's Comparison Theorem |
|
|
257 | (5) |
|
6.3.2 Burkholder's Inequality |
|
|
262 | (1) |
|
|
263 | (3) |
|
Chapter 7 Continuous Parameter Martingales |
|
|
266 | (33) |
|
7.1 Continuous Parameter Martingales |
|
|
266 | (16) |
|
7.1.1 Progressively Measurable Functions |
|
|
266 | (1) |
|
7.1.2 Martingales: Definition and Examples |
|
|
267 | (3) |
|
|
270 | (2) |
|
7.1.4 Stopping Times and Stopping Theorems |
|
|
272 | (4) |
|
7.1.5 An Integration by Parts Formula |
|
|
276 | (4) |
|
|
280 | (2) |
|
7.2 Brownian Motion and Martingales |
|
|
282 | (10) |
|
7.2.1 Levy's Characterization of Brownian Motion |
|
|
282 | (2) |
|
7.2.2 Doob-Meyer Decomposition, an Easy Case |
|
|
284 | (5) |
|
7.2.3 Burkholder's Inequality Again |
|
|
289 | (1) |
|
|
290 | (2) |
|
7.3 The Reflection Principle Revisited |
|
|
292 | (7) |
|
7.3.1 Reflecting Symmetric Levy Processes |
|
|
292 | (2) |
|
7.3.2 Reflected Brownian Motion |
|
|
294 | (4) |
|
|
298 | (1) |
|
Chapter 8 Gaussian Measures on a Banach Space |
|
|
299 | (68) |
|
8.1 The Classical Wiener Space |
|
|
299 | (7) |
|
8.1.1 Classical Wiener Measure |
|
|
299 | (4) |
|
8.1.2 The Classical Cameron--Martin Space |
|
|
303 | (3) |
|
|
306 | (1) |
|
8.2 A Structure Theorem for Gaussian Measures |
|
|
306 | (11) |
|
|
306 | (1) |
|
8.2.2 The Basic Structure Theorem |
|
|
307 | (3) |
|
8.2.3 The Cameron--Marin Space |
|
|
310 | (3) |
|
|
313 | (4) |
|
8.3 From Hilbert to Abstract Wiener Space |
|
|
317 | (20) |
|
8.3.1 An Isomorphism Theorem |
|
|
317 | (1) |
|
|
318 | (4) |
|
8.3.3 Orthogonal Projections |
|
|
322 | (4) |
|
8.3.4 Pinned Brownian Motion |
|
|
326 | (2) |
|
8.3.5 Orthogonal Invariance |
|
|
328 | (2) |
|
|
330 | (7) |
|
8.4 A Large Deviations Result and Strassen's Theorem |
|
|
337 | (6) |
|
8.4.1 Large Deviations for Abstract Wiener Space |
|
|
337 | (3) |
|
8.4.2 Strassen's Law of the Iterated Logarithm |
|
|
340 | (2) |
|
|
342 | (1) |
|
8.5 Euclidean Free Fields |
|
|
343 | (15) |
|
8.5.1 The Ornstein--Uhlenbeck Process |
|
|
344 | (2) |
|
8.5.2 Ornstein--Uhlenbeck as an Abstract Wiener Space |
|
|
346 | (3) |
|
8.5.3 Higher Dimensional Free Fields |
|
|
349 | (6) |
|
|
355 | (3) |
|
8.6 Brownian Motion on a Banach Space |
|
|
358 | (9) |
|
8.6.1 Abstract Wiener Formulation |
|
|
358 | (3) |
|
8.6.2 Brownian Formulation |
|
|
361 | (2) |
|
8.6.3 Strassen's Theorem Revisited |
|
|
363 | (2) |
|
|
365 | (2) |
|
Chapter 9 Convergence of Measures on a Polish Space |
|
|
367 | (33) |
|
9.1 Prohorov--Varadarajan Theory |
|
|
367 | (19) |
|
|
367 | (3) |
|
|
370 | (7) |
|
9.1.3 The Levy Metric and Completeness of M1(E) |
|
|
377 | (4) |
|
|
381 | (5) |
|
9.2 Regular Conditional Probability Distributions |
|
|
386 | (6) |
|
|
388 | (2) |
|
9.2.2 Representing Levy Measures via the Ito Map |
|
|
390 | (2) |
|
|
392 | (1) |
|
9.3 Donsker's Invariance Principle |
|
|
392 | (8) |
|
|
393 | (3) |
|
9.3.2 Rayleigh's Random Flights Model |
|
|
396 | (3) |
|
|
399 | (1) |
|
Chapter 10 Wiener Measure and Partial Differential Equations |
|
|
400 | (56) |
|
10.1 Martingales and Partial Differential Equations |
|
|
400 | (16) |
|
10.1.1 Localizing and Extending Martingale Representations |
|
|
401 | (3) |
|
10.1.2 Minimum Principles |
|
|
404 | (1) |
|
10.1.3 The Hermite Heat Equation |
|
|
405 | (2) |
|
|
407 | (4) |
|
10.1.5 Recurrence and Transience of Brownian Motion |
|
|
411 | (4) |
|
|
415 | (1) |
|
10.2 The Markov Property and Potential Theory |
|
|
416 | (13) |
|
10.2.1 The Markov Property for Wiener Measure |
|
|
416 | (1) |
|
10.2.2 Recurrence in One and Two Dimensions |
|
|
417 | (1) |
|
10.2.3 The Dirichlet Problem |
|
|
418 | (8) |
|
|
426 | (3) |
|
|
429 | (27) |
|
10.3.1 A General Construction |
|
|
429 | (2) |
|
10.3.2 The Dirichlet Heat Kernel |
|
|
431 | (5) |
|
10.3.3 Feynman--Kac Heat Kernels |
|
|
436 | (3) |
|
10.3.4 Ground States and Associated Measures on Pathspace |
|
|
439 | (6) |
|
10.3.5 Producing Ground States |
|
|
445 | (4) |
|
|
449 | (7) |
|
Chapter 11 Some Classical Potential Theory |
|
|
456 | (61) |
|
|
456 | (19) |
|
11.1.1 The Dirichlet Heat Kernel Again |
|
|
456 | (3) |
|
11.1.2 Exiting Through ∂regG |
|
|
459 | (4) |
|
11.1.3 Applications to Questions of Uniqueness |
|
|
463 | (5) |
|
|
468 | (4) |
|
|
472 | (3) |
|
11.2 The Poisson Problem and Green Functions |
|
|
475 | (12) |
|
11.2.1 Green Functions when N ≥ 3 |
|
|
476 | (1) |
|
11.2.2 Green Functions when N ψ {1,2} |
|
|
477 | (9) |
|
|
486 | (1) |
|
11.3 Excessive Functions, Potentials, and Riesz Decompositions |
|
|
487 | (10) |
|
11.3.1 Excessive Functions |
|
|
488 | (1) |
|
11.3.2 Potentials and Riesz Decomposition |
|
|
489 | (7) |
|
|
496 | (1) |
|
|
497 | (20) |
|
11.4.1 The Capacitory Potential |
|
|
497 | (3) |
|
11.4.2 The Capacitory Distribution |
|
|
500 | (4) |
|
|
504 | (3) |
|
11.4.4 Some Asymptotic Expressions Involving Capacity |
|
|
507 | (7) |
|
|
514 | (3) |
Notation |
|
517 | (4) |
Index |
|
521 | |