Atjaunināt sīkdatņu piekrišanu

E-grāmata: Probability Theory: A Complete One-semester Course

(Curtin Univ, Australia)
  • Formāts: 224 pages
  • Izdošanas datums: 12-Jun-2015
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814678056
  • Formāts - EPUB+DRM
  • Cena: 18,03 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 224 pages
  • Izdošanas datums: 12-Jun-2015
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814678056

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a systematic, self-sufficient and yet short presentation of the mainstream topics on introductory Probability Theory with some selected topics from Mathematical Statistics. It is suitable for a 10 to 14-week course for second or the third year undergraduate students in Science, Mathematics, Statistics, Finance, or Economics, who have completed some introductory course in Calculus. There is a sufficient number of problems and solutions to cover weekly tutorials.
Preface v
Acknowledgments vii
Week
1. Probability
1(13)
1.1 Probability axioms
1(3)
1.2 The laws of set theory
4(2)
1.3 Conditional probability
6(1)
1.4 Bayes' rules
7(2)
1.5 Independence
9(1)
1.6 Combinatorial formulas
9(4)
Problems for Week 1
13(1)
Week
2. Random Variables
14(18)
2.1 Random variables and their distributions
14(2)
2.2 Some quantitative characteristics: Median and quantiles
16(1)
2.3 Independent random variables
16(1)
2.4 Discrete random variables
17(1)
2.5 Examples of discrete distributions
18(4)
2.6 Continuous distributions
22(2)
2.7 Examples of continuous random variables
24(6)
Problems for Week 2
30(2)
Week
3. Joint Distributions
32(13)
3.1 The joint distribution of two random variables
32(1)
3.2 Discrete random vectors
33(1)
3.3 Review of double integrals
34(2)
3.4 Continuous random vectors
36(1)
3.5 Uniform distribution for vectors
37(1)
3.6 Several continuous random variables
38(1)
3.7 Bivariate normal density
38(1)
3.8 The distribution of independent random variables
39(1)
3.9 Mixed case
40(1)
3.10 Conditional frequencies
40(1)
3.11 Conditional densities
41(1)
3.12 Bayes' formula for the densities
42(2)
Problems for Week 3
44(1)
Week
4. Transformations of the Distributions
45(16)
4.1 The density for the invertible functions
45(3)
4.2 Sums of random variables
48(2)
4.3 Ratio distribution/quotients
50(3)
4.4 Transformation of the joint density
53(3)
4.5 Multivariate case
56(1)
4.6 Distributions for maximums and minimums
56(2)
4.7 Order statistics
58(2)
Problems for Week 4
60(1)
Week
5. Expectation of Random Variables
61(11)
5.1 Expectation of a discrete random variable
61(2)
5.2 Expectation of a continuous random variable
63(1)
5.3 The case of the distributions with heavy tails (fat tails)
63(1)
5.4 Expectations of functions of random variables
64(2)
5.5 Joint probability distributions
66(1)
5.6 Expectation of linear combination of random variables
66(2)
5.7 Expectation of a product
68(1)
5.8 Probability of an event
69(1)
5.9 The moments
70(1)
Problems for Week 5
71(1)
Week
6. Variance and Covariance
72(13)
6.1 Variance and standard deviation
72(2)
6.2 Existence of variance and 2nd moment
74(1)
6.3 Variance of linear transformations of random variables
75(1)
6.4 Chebyshev's inequality
75(3)
6.5 Example: Binomial distribution
78(1)
6.6 Covariance
79(1)
6.7 Covariance and linear transformations
79(1)
6.8 Correlation
80(2)
6.9 Example: Investment portfolios
82(1)
6.10 Example: Linearly related random variables
83(1)
Problems for Week 6
84(1)
Week
7. Conditional Expectations
85(9)
7.1 Conditional expectations given an observed value
85(2)
7.2 Conditional expectation as an expectation
87(1)
7.3 Conditional moments
87(1)
7.4 Conditional expectation as a random variable
88(3)
7.5 Expectation as the best estimate
91(2)
Problems for Week 7
93(1)
Week
8. Moment Generating Functions
94(11)
8.1 Definition of moment generating function
94(1)
8.2 m.g.f. for a sum of independent random variables
95(2)
8.3 m.g.f. and linear transformation of the random variable
97(1)
8.4 m.g.f. and the moments
98(2)
8.5 Calculation of the moments using m.g.f.
100(1)
8.6 On the polynomial and exponential m.g.f.
101(3)
Problems for Week 8
104(1)
Week
9. Analysis of Some Important Distributions
105(16)
9.1 Normal (Gaussian) distribution
105(2)
9.2 Bivariate normal density
107(4)
9.3 Chi-squared distribution
111(2)
9.4 Poisson distribution
113(1)
9.5 Gamma distribution
114(3)
9.6 Some other distributions
117(2)
Problems for Week 9
119(2)
Week
10. Limit Theorems
121(13)
10.1 Classical limits for the sequences of real numbers
121(1)
10.2 Types of limits for random variables
121(1)
10.3 The Law of Large Numbers
122(1)
10.4 Convergence of random variables in distribution
123(2)
10.5 The Central Limit Theorem
125(7)
Problems for Week 10
132(2)
Week
11. Statistical Inference: Point Estimation
134(14)
11.1 Maximum Likelihood Estimation
134(3)
11.2 The method of moments
137(2)
11.3 Sample variance
139(1)
11.4 Properties of the sample mean and sample variance
139(1)
11.5 Properties of Gaussian samples
140(4)
11.6 Some useful distributions for Gaussian samples
144(3)
Problems for Week 11
147(1)
Week
12. Statistical Inference: Interval Estimation
148(12)
12.1 Critical values for the distributions
148(1)
12.2 Interval estimation: Confidence interval
149(4)
12.3 Hypothesis testing
153(4)
12.4 Confidence intervals and hypothesis testing
157(1)
Problems for Week 12
158(2)
Appendix 1: Solutions for the Problems for Weeks 1-12 160(27)
Appendix 2: Sample Problems for Final Exams 187(8)
Appendix 3: Some Bonus Challenging Problems 195(3)
Appendix 4: Statistical Tables 198(7)
Bibliography 205(2)
Index 207(2)
Legend of Notations and Abbreviations 209